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1. INTRODUCTION

Glass manufacturing plays a crucial role in modern industries, 

providing essential materials for sectors such as construction, 

automotive, packaging, and electronics. Its widespread use is 

attributed to the unique properties of glass, including its 

durability, versatility, and sustainability compared to 

alternative materials. However, the production process is 

highly energy-intensive, requiring temperatures above 1500°C 

to melt raw materials and refine molten glass into products. 

This dependency on energy-intensive processes makes glass 

manufacturing a notable contributor to carbon emissions, 

highlighting the need for measures to reduce its environmental 

impact (Collina et al., 2023).

Decarbonizing glass manufacturing is pivotal in achieving 

global climate goals, including those set by the Paris 

Agreement (United Nations, 2024; Rio et al., 2022). While the 

integration of hydrogen as an alternative energy source in 

furnaces is a promising development, as highlighted by 

initiatives like (H2GLASS, 2023), decarbonization also 

depends on reliable operations of infrastructure, minimizing 

energy waste, and reducing material losses across the value 

chain. Achieving these objectives requires innovations not 

only in energy supply but also in manufacturing processes. 

Predictive maintenance can potentially support energy and 

resource efficiency, particularly when maintenance actions are 

precisely timed to prevent unnecessary resource consumption 

and operational inefficiencies (Colangelo, 2024). However, 

achieving these benefits depends on effective implementation 

and integration within the manufacturing system.

Predictive maintenance departs from traditional reactive and 

preventive strategies by employing real-time condition 

monitoring, historical data, and predictive models to assess the 

health of components and anticipate their degradation (Sang, 

2021). However, predictive maintenance planning goes 

beyond prediction by integrating these insights into a 

structured, cost-optimized maintenance strategy (Amaitik et 

al., 2023). For the glass industry, where precision in shaping 

and dimensional accuracy, as well as operational reliability, 

are essential, predictive maintenance planning involves not 

only predicting when equipment will degrade but also 

determining the most cost-effective and operationally efficient 

schedule for performing maintenance. This proactive approach 

ensures maintenance actions are performed only when 

necessary, reducing unplanned downtimes and extending the 

lifetime of critical equipment (Cachada, 2018; Collina et al., 

2023). Incorporating predictive maintenance planning into 

glass manufacturing process directly aligns with the goals of 

decarbonization by improving reliability and reducing 

operational inefficiencies.

This paper introduces an innovative predictive maintenance 

planning framework adapted to the forming process in glass 

manufacturing. It focuses on three critical components: Gob 

Delivery System, which ensures precise molten glass transfer; 

Blank Moulds, responsible for initial shaping; and Blow 

Moulds, which finalize product quality. The proposed 

framework aims to minimize downtime, enhance efficiency, 

and support sustainability objectives. Through these 

advancements, predictive maintenance planning can 

complement broader industry efforts, such as hydrogen 

adoption for glass furnaces, and contribute to the 

modernization and decarbonization of glass manufacturing.
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climate goals. This study focuses on advancing sustainability in glass manufacturing through a predictive 

maintenance planning framework adapted to critical forming components, including Gob Delivery System, 

Blank Moulds, and Blow Moulds. By optimizing maintenance schedules and minimizing unplanned 

downtimes, the framework reduces resource wastage, energy inefficiencies, and associated carbon 

emissions, thereby aligning operational practices with sustainability objectives. The proposed framework 

integrates reliability analysis, cost evaluation, and advanced optimization techniques to dynamically 

generate maintenance schedules. A computational tool developed for this purpose simulates degradation 

and maintenance processes, offering actionable insights into component reliability and cost efficiency. 

While validated using simulated data, the methodology is adaptable for broader industrial applications, 

promising significant contributions to the sustainability of glass manufacturing.

Advancing Sustainable Glass Manufacturing through Optimized Predictive 

Maintenance Planning of Critical Forming Components
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2. PREDICTIVE MAINTENANCE PLANNING FOR 

GLASS MANUFACTURING

Glass manufacturing is a complex process that transforms raw 

materials such as silica, soda ash, and limestone into a variety 

of products. This process starts with melting the raw materials 

in furnaces, followed by forming, annealing, and finishing 

stages. Each stage demands precision and control to ensure 

product quality. The forming stage is critical, as it shapes 

molten glass into final products with desired specifications and 

dimensions (Hubert, 2019).

The forming process involves three key components: Gob 

Delivery System, Blank Moulds, and Blow Moulds, which 

work in synchrony to create the glass product. The Gob 

Delivery System plays a crucial role in transferring molten 

glass from the forehearth to the forming machine. The system 

precisely cuts the molten glass into uniform gobs and delivers 

them to moulds for shaping, as shown in Figure 1, while the 

Blank and Blow Moulds are responsible for shaping and 

refining the product. Several forming methods are employed 

in the glass industry, including blow-and-blow, press-and-

blow, and narrow-neck press-and-blow techniques. These 

methods are selected based on the product type and desired 

characteristics. For instance, the blow-and-blow method is 

commonly used for producing hollow glass containers like 

bottles. As depicted in Figure 2, this method involves an initial 

shaping phase in the blank mould, followed by a final shaping 

phase in the blow mould, where compressed air is used to 

refine the product. This process highlights the need for precise 

coordination and reliability of the forming components to 

ensure high-quality output (Miller & Sullivan, 1984).

Ensuring the reliability of these components is essential, as it 

directly impacts the precision required to maintain product 

quality in glass forming processes. Traditional maintenance 

methods, such as reactive and preventive maintenance, have 

limitations. Reactive maintenance often results in costly 

unplanned downtimes, while preventive maintenance can lead 

to over-maintenance and unnecessary resource expenditure 

(Alsaif et al., 2024). Predictive maintenance offers a more 

cost-effective alternative, using real-time condition 

monitoring data to predict equipment degradation and 

optimize maintenance actions.

Predictive maintenance approaches have shown increasing 

applicability in glass manufacturing, addressing the reliability 

and efficiency of critical components. A study by Okwuobi et 

al. (2018) explored the use of Reliability-Centered 

Maintenance (RCM) in individual section-forming machines, 

demonstrating its potential to reduce downtime and improve 

system availability through a structured failure analysis. 

Similarly, Alsaif et al. (2024) highlighted the role of multi-

objective optimization in preventive maintenance planning in 

a Saudi glass production plant. Furthermore, Collina et al. 

(2023) emphasized the importance of Risk-Based 

Maintenance (RBM) in managing the unique operational 

challenges of the glass industry, particularly with evolving 

decarbonization efforts. These methodologies collectively 

illustrate the benefits of predictive maintenance while 

highlighting the need for integrated solutions to address the 

specific demands of glass forming processes.

Recent advancements in predictive maintenance utilize 

condition monitoring data, machine learning, and real-time 

analytics to predict component degradation before failures 

occur. Machine learning-based approaches, such as Deep 

Reinforcement Learning, Random Forest Classifiers and 

Support Vector Machines, have demonstrated efficacy in 

identifying patterns and predicting failures, as seen in 

applications for machinery like laminated glass cutters and 

manufacturing systems (Ornati, 2019; Zhang et al., 2022a).

Intelligent predictive maintenance frameworks now combine 

condition-based monitoring with decision-support systems to 

provide actionable insights, improving operational reliability 

and reducing costs (Cachada, 2018; Zhang et al., 2022b).

Despite these advancements, existing methodologies often 

lack seamless integration between predictive insights and 

maintenance planning. Current approaches focus on failure 

prediction or risk prioritization but have limited integration of 

cost analysis and dynamic scheduling to optimize maintenance 

actions. The proposed framework addresses this gap by 

combining reliability analysis, cost evaluation, and advanced 

artificial intelligence optimization techniques. It focuses on 

developing degradation curves for critical components in the 

glass forming process, including Gob Delivery System, Blank 

Moulds, and Blow Moulds, and integrates these with 

maintenance cost models and scheduling algorithms. This 

holistic approach ensures that maintenance actions are not only 

timely and accurate but also cost-effective and operationally 

efficient, addressing the unique demands of high-precision, 

high-temperature environments like glass manufacturing.

3. PROPOSED FRAMEWORK FOR PREDICTIVE 

MAINTENANCE PLANNING

In this section, we present the proposed framework for 

predictive maintenance planning applied to glass forming 

process.

3.1 Framework Overview

The proposed framework contributes to predictive 

maintenance planning research by integrating degradation 

Figure 1. Gob delivery process (Le Bourhis, 2008)

Figure 2. Blown glass forming process (Miller & Sullivan, 1984)
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modelling, cost evaluation, repair impact model and dynamic 

scheduling in a structured optimization approach to establish 

an optimized predictive maintenance schedule for the three 

key components of glass forming process: Gob Delivery 

System, Blank Moulds, and Blow Moulds. This framework 

enables real-time decision-making adapted to high-precision, 

energy-intensive environments such as glass manufacturing.

The degradation model uses Weibull reliability function to 

predict the condition of each component over time through 

generated degradation curves. They are dynamically updated 

as new data is collected, enhancing prediction accuracy, and 

ensuring maintenance decisions reflect current equipment 

conditions. The repair impact model evaluates the effects of 

different maintenance actions on component reliability and 

system performance. The maintenance cost model 

complements this by calculating the financial implications of 

various maintenance strategies, including costs associated 

with repairs, replacements, and potential downtimes. The 

scheduling model integrates outputs from other models to 

create optimized maintenance plans. It employs Genetic 

Algorithms techniques to generate schedules that balance 

reliability, cost, and operational efficiency. The goal is to 

ensure maintenance activities are performed at the most cost-

effective times while minimizing disruptions to production.

3.2 Computational Approach and Problem Formulation 

This comprehensive framework offers a structured approach 

to predictive maintenance planning, as presented in Figure 3. 

By dynamically integrating degradation analysis, cost 

evaluation, and scheduling, the framework ensures that 

maintenance decisions are data-driven, cost-effective, and 

adapted to the specific requirements of high-precision 

manufacturing environments.

The computational approach involves the mathematical 

formulation of the predictive maintenance planning problem. 

The problem is modelled to balancing the goals of maximizing 

component reliability and minimizing maintenance costs. 

Given a machine with known initial conditions for its 

components, and if a repair or no-repair action is taken, the 

degradation and impact models can predict the components’ 

conditions over any time interval. Each repair strategy has an 

associated repair cost. Therefore, it is possible to construct an 

optimization problem to determine the best set of repairs that 

achieve the maximum reliability/cost ratio.

The objective function and constraints for the machine i at time 

interval t to maximize reliability/cost ratio are formulated in 

Equations (1) through (6).

Objective function:

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅(𝑖𝑖, 𝑡𝑡)
𝑃𝑃𝑃𝑃(𝑀𝑀𝑀𝑀(𝑖𝑖, 𝑡𝑡))⁄ (1)

Subject to:

𝑅𝑅𝑅𝑅(𝑖𝑖, 𝑡𝑡) ≥ 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖) (2)

𝑅𝑅𝑅𝑅(𝑐𝑐, 𝑡𝑡) ≥ 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐) (3)

∑ ∑ 𝑃𝑃𝑃𝑃(𝑀𝑀𝑀𝑀(𝑐𝑐, 𝑡𝑡)) ≤
𝐶𝐶

𝑐𝑐=1

𝑇𝑇

𝑡𝑡=1
𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡) (4)

𝑅𝑅𝑅𝑅(𝑐𝑐, 𝑡𝑡) = {𝑅𝑅𝑅𝑅(𝑐𝑐, 𝑡𝑡)𝑛𝑛𝑛𝑛𝑛𝑛

𝑅𝑅𝑅𝑅(𝑐𝑐, 𝑡𝑡)
𝑖𝑖𝑖𝑖 𝑐𝑐 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (5)

𝑅𝑅𝑅𝑅(𝑖𝑖, 𝑡𝑡) = ∏ 𝑅𝑅𝑅𝑅(𝑐𝑐, 𝑡𝑡)
𝐶𝐶

𝑐𝑐=1
, at any time 𝑡𝑡 (6)

Where, i denotes to machine, t denotes to time interval (e.g., 

hours, days, years), C is the number of components to be 

analyzed for the machine, T is the number of time interval in 

planning horizon, RT(i,t) is the overall reliability of the 

machine i at the end of time t, RT(c,t) is the reliability of the 

component c at the end of time t, MC(i,t) is total maintenance 

cost of the machine i at the end of time t, MC(c,t) is the

maintenance cost of component c at the end of time t, 

RT(c,t)new is the new reliability of a component c after 

maintenance at the end of time t, and PV is costs present value.

The decision variables in this optimization include timing and 

type of maintenance actions recommended by the predictive 

model based on estimated component reliability. Separate 

optimizations are carried out for each time interval in the 

planning horizon. A solution for the problem is structured as a 

string of three elements, as shown in Figure 4. Each variable 

can be assigned an integer value from 0 to 2, corresponding to 

one of the predictive maintenance actions: (0 = no action when 

reliability is high; 1 = repair when moderate degradation is 

detected; 2 = replace when severe degradation is predicted).

The decision variables include the timing and type of 

time 

Figure 3. Approach for predictive maintenance planning.

Figure 4. Solution structure for the schedule algorithm.
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4. IMPLEMENTATION TO GLASS FORMING PROCESS

In this section, we present the implementation of proposed 

predictive maintenance planning framework to glass forming 

process and results obtained.

4.1 Case Study Setup

The framework is validated through a simulation-based 

approach, utilizing reliability parameters and maintenance cost 

models. The computational tool developed for this study 

simulates degradation patterns and optimizes maintenance 

schedules, demonstrating the feasibility and effectiveness of 

the model. While real-world implementation is a future step, 

the simulated results provide actionable insights for 

manufacturing applications. We use expert judgment 

supported by literature conducted in section (2). We estimate 

the model parameters, as summarized in Tables 1 through 4, to 

experiment our framework. These parameters include 

components lifetime, Weibull reliability parameters (η-Eta and 

β-Beta) for degradation estimation, maintenance cost data, and 

percentages of reliability restored for each component. 

4.1.1 Critical Components and Maintenance Strategies

The three-tier maintenance strategy employed consists of: No 

Action, Repair, and Replace. These strategies reflect 

increasing levels of intervention, with corresponding impacts 

on cost and reliability. Table 1 summarizes the critical 

components, their functions, and the defined maintenance 

actions, inlight of Figures 1 & 2.

Table 1. Components and predictive maintenance actions

Component Function
Predictive Maintenance 

Actions

Gob Delivery 

System

Transfers 

molten glass 

to moulds

• No Action (high reliability)

• Repair (moderate degradation)

• Replace (severe degradation)

Blank Mould

Initial 

shaping of 

molten glass

• No Action (high reliability)

• Repair (moderate degradation)

• Replace (severe degradation)

Blow Mould

Final 

shaping of 

glass 

products

• No Action (high reliability)

• Repair (moderate degradation)

• Replace (severe degradation)

4.1.2 Weibull Reliability Parameters 

To simulate degradation behaviour, hypothetical Weibull 

parameters (scale parameter η and shape parameter β) were 

assumed for each component. These parameters reflect the 

reliability characteristics, with η representing the time to 

failure and β indicating the failure rate trend (increasing, 

constant, or decreasing). Table 2 provides the assumed values.

Table 2. Weibull parameters (η, β)

Component η β

Gob Delivery System 2000 hours 1.5

Blank Mould 1500 hours 2.0

Blow Mould 1800 hours 2.2

For experimentation, η and β were assumed to vary across 

components to reflect realistic degradation patterns. The Gob 

Delivery System, was assigned a β=1.5, indicating an 

increasing failure rate due to blade wear over time. The Blank 

Moulds and Blow Moulds, with β ≥ 2.0, were modelled with a 

sharper failure rate trend, representing surface fatigue from 

repeated exposure to high temperatures and mechanical stress.

The scale parameter η represents the expected operating 

lifetime under normal conditions and was assigned based on 

relative usage patterns and criticality. These parameters enable 

the simulation of reliability degradation curves, essential for 

optimizing maintenance schedules.

4.1.3 Repair Impact on Reliability

The repair impact model assumes that repairs restore a 

percentage of the component’s reliability. These percentages 

were hypothesized based on the severity of the degradation and 

the type of repair action, as shown in Table 3.

Table 3. Repair impact parameters

Component
Repair Impact (% Reliability Restored)

No action Repair Replace

Gob Delivery System 0 70 100

Blank Mould 0 60 100

Blow Mould 0 60 100

4.1.4 Maintenance Costs

Maintenance costs were assigned for each component and 

repair action to evaluate cost optimization. Table 4 lists the 

hypothetical cost values.

Table 4. Maintenance cost parameters

Component
Cost (€)

No action Repair Replace

Gob Delivery System 0 300 1800

Blank Mould 0 400 1300

Blow Mould 0 400 1400

4.2 Results and Discussions

To implement the proposed predictive maintenance planning 

framework, a computational tool based on VBA programming 

language has been developed, utilizing algorithms to simulate 

the degradation, repair, and maintenance processes for the 

critical forming components over a predefined planning 

horizon. The tool integrates the estimated parameters for the 

Gob Delivery System, Blank Moulds, and Blow Moulds, as 

presented in the case study setup (Tables 1–4). For this 

analysis, a 5000-hours is considered as the planning horizon, 

assuming all components are brand new at the start. The tool 

dynamically updates the degradation of components based on 

simulated reliability parameters. In real-world scenario, the 

tool dynamically leans and updates reliability parameters 

based on condition monitoring data collected on the compnent. 

The tool subsequently generates optimized maintenance 

schedules that effectively balance cost considerations with 

reliability requirements. Key outputs include predicted 

degradation curves, the reliability impact of different 

maintenance strategies, and cost analyses for repair and 

replacement actions, providing actionable insights for 

sustainable maintenance planning in the glass forming process.

Degradation Analysis: The tool provides degradation curves 

for components and the whole machine system throughout the 

analysis period (Figures 5–8). These curves show the 

performance over time and analyze the impact of different 
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Figure 5. Degradation curve for Gob Delivery System.

repair and replacement strategies on component reliability. 

The Gob Delivery System, for example, has experienced 4 

interventions (3 repairs and 1 replacement of the blades)

throughout the planning horizon. The first repair occurred on 

hour 1567. This resulted in an improvement in the Gob 

Delivery System’s reliability to 0.892.  This demonstrates the 

value of predictive maintenance interventions, as opposed to 

allowing components to run to failure and then replacing them.

Maintenance Schedule: The tool presents a predictive 

maintenance schedule for each component based on 

degradation and cost analysis so that manufacturers are 

informed in advance for taking the necessary arrangements for 

maintenance activities. Additionally, it shows statistics on 

repair and replacement implemented for each component 

(Figure 9). For example, during the 5000-hours planning 

horizon, 13 repair/replacement interventions are expected to 

be occurred (10 repairs and 3 replacements).

Maintenance Cost Analysis: The tool provides detailed 

analysis and insights into the maintenance cost of the machine. 

It shows cumulative costs, costs per intervention, and cost 

breakdown per component. For example, during the 5000-

hours planning horizon, a cumulative cost analysis is 

conducted (Figure 10-a) to provide manufacturers with 

insights into the intervals where higher costs are expected, 

enabling them to plan the required budget for maintenance 

activities accordingly. Additionally, the cost incurred for each 

component is calculated (Figure 10-b), highlighting the 

components that require the most expenditure. In our example, 

the Blank Moulds component demands the highest cost 

followed by Gob Delivery System.

5. CONCLUSION

The proposed predictive maintenance planning framework 

integrates reliability analysis, cost evaluation, and advanced 

optimization techniques to generate dynamic and efficient 

maintenance schedules. By utilizing real-time condition 

monitoring data and dynamically updating reliability 

parameters, the framework ensures timely interventions, 

reducing downtime and extending component lifetime. This 

approach addresses the specific challenges posed by the high-

temperature and precision-driven environment of glass

forming processes, particularly for the Gob Delivery System, 

Blank Moulds, and Blow Moulds.

The framework represents a significant advancement in 

predictive maintenance planning for the glass industry, 

offering a tailored solution that balances operational 

Figure 9. Maintenance schedule and statistics.

Figure 6. Degradation curve for Blank Moulds.

Figure 7. Degradation curve for Blow Moulds.

Figure 8. Degradation curve for Forming Machine.

Figure 10. Maintenance cost analysis.
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reliability, cost-efficiency, and sustainability. While this study 

focuses on the forming stage of glass manufacturing, the 

methodology demonstrates adaptability, providing potential 

for extension to other stages of production. This adaptability 

enhances its relevance for broader industrial applications, 

particularly in high-precision, energy-intensive sectors.

Despite the feasibility demonstrated, the reliance on simulated 

data in this study introduces limitations. When applied to real-

world industrial environments, the framework may require 

adjustments such as incorporating industry-specific 

operational constraints, integrating diverse condition 

monitoring systems, and refining reliability parameters based 

on empirical data to account for variability and complexity. 

Future research should emphasize validating the model with 

empirical data to improve its accuracy and adaptability. 

Additionally, integrating this framework with advanced digital 

tools, such as digital twins, could enhance real-time simulation 

and optimization for predictive maintenance. Further research 

could also focus on multi-objective optimization, 

incorporating sustainability metrics alongside cost and 

reliability, and AI-driven adaptive maintenance scheduling. 

Extending this approach to other high-precision manufacturing 

sectors would provide broader insights into predictive 

maintenance strategies, strengthening its industrial 

applicability.

Ultimately, this framework underscores the potential of 

predictive maintenance planning in fostering more sustainable 

and efficient manufacturing practices. This approach 

contributes to the decarbonization of glass manufacturing, 

advancing the industry’s commitment to sustainability by 

aligning maintenance strategies with operational and 

environmental goals.
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