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Abstract: The glass manufacturing industry is a key contributor to various sectors, including construction,
automotive, and packaging. However, it is also energy-intensive and contributes significantly to global
carbon emissions. Decarbonizing glass production is essential for aligning industrial practices with global
climate goals. This study focuses on advancing sustainability in glass manufacturing through a predictive
maintenance planning framework adapted to critical forming components, including Gob Delivery System,
Blank Moulds, and Blow Moulds. By optimizing maintenance schedules and minimizing unplanned
downtimes, the framework reduces resource wastage, energy inefficiencies, and associated carbon
emissions, thereby aligning operational practices with sustainability objectives. The proposed framework
integrates reliability analysis, cost evaluation, and advanced optimization techniques to dynamically
generate maintenance schedules. A computational tool developed for this purpose simulates degradation
and maintenance processes, offering actionable insights into component reliability and cost efficiency.
While validated using simulated data, the methodology is adaptable for broader industrial applications,
promising significant contributions to the sustainability of glass manufacturing.
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1. INTRODUCTION

Glass manufacturing plays a crucial role in modern industries,
providing essential materials for sectors such as construction,
automotive, packaging, and electronics. Its widespread use is
attributed to the unique properties of glass, including its
durability, versatility, and sustainability compared to
alternative materials. However, the production process is
highly energy-intensive, requiring temperatures above 1500°C
to melt raw materials and refine molten glass into products.
This dependency on energy-intensive processes makes glass
manufacturing a notable contributor to carbon emissions,
highlighting the need for measures to reduce its environmental
impact (Collina et al., 2023).

Decarbonizing glass manufacturing is pivotal in achieving
global climate goals, including those set by the Paris
Agreement (United Nations, 2024; Rio et al., 2022). While the
integration of hydrogen as an alternative energy source in
furnaces is a promising development, as highlighted by
initiatives like (H2GLASS, 2023), decarbonization also
depends on reliable operations of infrastructure, minimizing
energy waste, and reducing material losses across the value
chain. Achieving these objectives requires innovations not
only in energy supply but also in manufacturing processes.
Predictive maintenance can potentially support energy and
resource efficiency, particularly when maintenance actions are
precisely timed to prevent unnecessary resource consumption
and operational inefficiencies (Colangelo, 2024). However,
achieving these benefits depends on effective implementation
and integration within the manufacturing system.

Predictive maintenance departs from traditional reactive and
preventive strategies by employing real-time condition

monitoring, historical data, and predictive models to assess the
health of components and anticipate their degradation (Sang,
2021). However, predictive maintenance planning goes
beyond prediction by integrating these insights into a
structured, cost-optimized maintenance strategy (Amaitik et
al., 2023). For the glass industry, where precision in shaping
and dimensional accuracy, as well as operational reliability,
are essential, predictive maintenance planning involves not
only predicting when equipment will degrade but also
determining the most cost-effective and operationally efficient
schedule for performing maintenance. This proactive approach
ensures maintenance actions are performed only when
necessary, reducing unplanned downtimes and extending the
lifetime of critical equipment (Cachada, 2018; Collina et al.,
2023). Incorporating predictive maintenance planning into
glass manufacturing process directly aligns with the goals of
decarbonization by improving reliability and reducing
operational inefficiencies.

This paper introduces an innovative predictive maintenance
planning framework adapted to the forming process in glass
manufacturing. It focuses on three critical components: Gob
Delivery System, which ensures precise molten glass transfer;
Blank Moulds, responsible for initial shaping; and Blow
Moulds, which finalize product quality. The proposed
framework aims to minimize downtime, enhance efficiency,
and support sustainability objectives. Through these
advancements, predictive maintenance planning can
complement broader industry efforts, such as hydrogen
adoption for glass furnaces, and contribute to the
modernization and decarbonization of glass manufacturing.
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2. PREDICTIVE MAINTENANCE PLANNING FOR
GLASS MANUFACTURING

Glass manufacturing is a complex process that transforms raw
materials such as silica, soda ash, and limestone into a variety
of products. This process starts with melting the raw materials
in furnaces, followed by forming, annealing, and finishing
stages. Each stage demands precision and control to ensure
product quality. The forming stage is critical, as it shapes
molten glass into final products with desired specifications and
dimensions (Hubert, 2019).

The forming process involves three key components: Gob
Delivery System, Blank Moulds, and Blow Moulds, which
work in synchrony to create the glass product. The Gob
Delivery System plays a crucial role in transferring molten
glass from the forehearth to the forming machine. The system
precisely cuts the molten glass into uniform gobs and delivers
them to moulds for shaping, as shown in Figure 1, while the
Blank and Blow Moulds are responsible for shaping and
refining the product. Several forming methods are employed
in the glass industry, including blow-and-blow, press-and-
blow, and narrow-neck press-and-blow techniques. These
methods are selected based on the product type and desired
characteristics. For instance, the blow-and-blow method is
commonly used for producing hollow glass containers like
bottles. As depicted in Figure 2, this method involves an initial
shaping phase in the blank mould, followed by a final shaping
phase in the blow mould, where compressed air is used to
refine the product. This process highlights the need for precise
coordination and reliability of the forming components to
ensure high-quality output (Miller & Sullivan, 1984).
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Figure 2. Blown glass forming process (Miller & Sullivan, 1984)

Ensuring the reliability of these components is essential, as it
directly impacts the precision required to maintain product
quality in glass forming processes. Traditional maintenance
methods, such as reactive and preventive maintenance, have
limitations. Reactive maintenance often results in costly
unplanned downtimes, while preventive maintenance can lead
to over-maintenance and unnecessary resource expenditure
(Alsaif et al., 2024). Predictive maintenance offers a more

cost-effective  alternative, using real-time condition
monitoring data to predict equipment degradation and
optimize maintenance actions.

Predictive maintenance approaches have shown increasing
applicability in glass manufacturing, addressing the reliability
and efficiency of critical components. A study by Okwuobi et
al. (2018) explored the use of Reliability-Centered
Maintenance (RCM) in individual section-forming machines,
demonstrating its potential to reduce downtime and improve
system availability through a structured failure analysis.
Similarly, Alsaif et al. (2024) highlighted the role of multi-
objective optimization in preventive maintenance planning in
a Saudi glass production plant. Furthermore, Collina et al.
(2023) emphasized the importance of Risk-Based
Maintenance (RBM) in managing the unique operational
challenges of the glass industry, particularly with evolving
decarbonization efforts. These methodologies collectively
illustrate the benefits of predictive maintenance while
highlighting the need for integrated solutions to address the
specific demands of glass forming processes.

Recent advancements in predictive maintenance utilize
condition monitoring data, machine learning, and real-time
analytics to predict component degradation before failures
occur. Machine learning-based approaches, such as Deep
Reinforcement Learning, Random Forest Classifiers and
Support Vector Machines, have demonstrated efficacy in
identifying patterns and predicting failures, as seen in
applications for machinery like laminated glass cutters and
manufacturing systems (Ornati, 2019; Zhang et al., 2022a).
Intelligent predictive maintenance frameworks now combine
condition-based monitoring with decision-support systems to
provide actionable insights, improving operational reliability
and reducing costs (Cachada, 2018; Zhang et al., 2022b).

Despite these advancements, existing methodologies often
lack seamless integration between predictive insights and
maintenance planning. Current approaches focus on failure
prediction or risk prioritization but have limited integration of
cost analysis and dynamic scheduling to optimize maintenance
actions. The proposed framework addresses this gap by
combining reliability analysis, cost evaluation, and advanced
artificial intelligence optimization techniques. It focuses on
developing degradation curves for critical components in the
glass forming process, including Gob Delivery System, Blank
Moulds, and Blow Moulds, and integrates these with
maintenance cost models and scheduling algorithms. This
holistic approach ensures that maintenance actions are not only
timely and accurate but also cost-effective and operationally
efficient, addressing the unique demands of high-precision,
high-temperature environments like glass manufacturing.

3. PROPOSED FRAMEWORK FOR PREDICTIVE
MAINTENANCE PLANNING

In this section, we present the proposed framework for
predictive maintenance planning applied to glass forming
process.

3.1 Framework Overview

The proposed framework contributes to predictive
maintenance planning research by integrating degradation
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modelling, cost evaluation, repair impact model and dynamic
scheduling in a structured optimization approach to establish
an optimized predictive maintenance schedule for the three
key components of glass forming process: Gob Delivery
System, Blank Moulds, and Blow Moulds. This framework
enables real-time decision-making adapted to high-precision,
energy-intensive environments such as glass manufacturing.

The degradation model uses Weibull reliability function to
predict the condition of each component over time through
generated degradation curves. They are dynamically updated
as new data is collected, enhancing prediction accuracy, and
ensuring maintenance decisions reflect current equipment
conditions. The repair impact model evaluates the effects of
different maintenance actions on component reliability and
system performance. The maintenance cost model
complements this by calculating the financial implications of
various maintenance strategies, including costs associated
with repairs, replacements, and potential downtimes. The
scheduling model integrates outputs from other models to
create optimized maintenance plans. It employs Genetic
Algorithms techniques to generate schedules that balance
reliability, cost, and operational efficiency. The goal is to
ensure maintenance activities are performed at the most cost-
effective times while minimizing disruptions to production.

3.2 Computational Approach and Problem Formulation

This comprehensive framework offers a structured approach
to predictive maintenance planning, as presented in Figure 3.
By dynamically integrating degradation analysis, cost
evaluation, and scheduling, the framework ensures that
maintenance decisions are data-driven, cost-effective, and
adapted to the specific requirements of high-precision
manufacturing environments.
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Figure 3. Approach for predictive maintenance planning.

The computational approach involves the mathematical
formulation of the predictive maintenance planning problem.
The problem is modelled to balancing the goals of maximizing
component reliability and minimizing maintenance costs.
Given a machine with known initial conditions for its
components, and if a repair or no-repair action is taken, the
degradation and impact models can predict the components’
conditions over any time interval. Each repair strategy has an

associated repair cost. Therefore, it is possible to construct an
optimization problem to determine the best set of repairs that
achieve the maximum reliability/cost ratio.

The objective function and constraints for the machine i at time
interval ¢ to maximize reliability/cost ratio are formulated in
Equations (1) through (6).

Obijective function:

Maximize ®T (& t)/pv(MC(i, t)) W

Subject to:
RT(i,t) = Threshold; (min reliability for machine i) )
RT(c,t) = Threshold. (min reliability for component ¢) (3)

T C
Z Z PV(MC(c,t)) <Threshold, (max repair budget pert) (4)

t=1c=1

RT(c,t)™" if c is selected for repair
RT(c,t) = 5
() { RT(c,t) otherwise )
c
RT(i,t) = 1_[ RT(c,t), atanytimet (6)
c=1

Where, i denotes to machine, ¢ denotes to time interval (e.g.,
hours, days, years), C is the number of components to be
analyzed for the machine, T is the number of time interval in
planning horizon, RT(it) is the overall reliability of the
machine i at the end of time ¢, RT(c,?) is the reliability of the
component c¢ at the end of time ¢, MC(i,¢) is total maintenance
cost of the machine i at the end of time 7, MC(c,?) is the
maintenance cost of component ¢ at the end of time ¢
RT(c,t)"” is the new reliability of a component ¢ after
maintenance at the end of time ¢, and PV is costs present value.

The decision variables in this optimization include timing and
type of maintenance actions recommended by the predictive
model based on estimated component reliability. Separate
optimizations are carried out for each time interval in the
planning horizon. A solution for the problem is structured as a
string of three elements, as shown in Figure 4. Each variable
can be assigned an integer value from 0 to 2, corresponding to
one of the predictive maintenance actions: (0 =no action when
reliability is high; 1 = repair when moderate degradation is
detected; 2 = replace when severe degradation is predicted).
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Figure 4. Solution structure for the schedule algorithm.
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4. IMPLEMENTATION TO GLASS FORMING PROCESS

In this section, we present the implementation of proposed
predictive maintenance planning framework to glass forming
process and results obtained.

4.1 Case Study Setup

The framework is validated through a simulation-based
approach, utilizing reliability parameters and maintenance cost
models. The computational tool developed for this study
simulates degradation patterns and optimizes maintenance
schedules, demonstrating the feasibility and effectiveness of
the model. While real-world implementation is a future step,
the simulated results provide actionable insights for
manufacturing applications. We use expert judgment
supported by literature conducted in section (2). We estimate
the model parameters, as summarized in Tables 1 through 4, to
experiment our framework. These parameters include
components lifetime, Weibull reliability parameters (n-Eta and
B-Beta) for degradation estimation, maintenance cost data, and
percentages of reliability restored for each component.

4.1.1 Critical Components and Maintenance Strategies

The three-tier maintenance strategy employed consists of: No
Action, Repair, and Replace. These strategies reflect
increasing levels of intervention, with corresponding impacts
on cost and reliability. Table 1 summarizes the critical
components, their functions, and the defined maintenance
actions, inlight of Figures 1 & 2.

Table 1. Components and predictive maintenance actions

. Predictive Maintenance
Component Function .
Actions
Gob Delivery Transfers ¢ No Aﬁctlon (high rellablllty?
System molten glass | e Repair (moderate degradation)
to moulds e Replace (severe degradation)
Initial e No Action (high reliability)
Blank Mould | shaping of o Repair (moderate degradation)
molten glass |  Replace (severe degradation)
E}‘lgalin of | *No Action (high reliability)
Blow Mould lafs & o Repair (moderate degradation)
§r0 ducts e Replace (severe degradation)

4.1.2 Weibull Reliability Parameters

To simulate degradation behaviour, hypothetical Weibull
parameters (scale parameter 1 and shape parameter ) were
assumed for each component. These parameters reflect the
reliability characteristics, with 1 representing the time to
failure and P indicating the failure rate trend (increasing,
constant, or decreasing). Table 2 provides the assumed values.

Table 2. Weibull parameters (1, B)

Component n §
Gob Delivery System 2000 hours 1.5
Blank Mould 1500 hours 2.0
Blow Mould 1800 hours 2.2

For experimentation, 1 and p were assumed to vary across
components to reflect realistic degradation patterns. The Gob
Delivery System, was assigned a p=1.5, indicating an
increasing failure rate due to blade wear over time. The Blank

Moulds and Blow Moulds, with f > 2.0, were modelled with a
sharper failure rate trend, representing surface fatigue from
repeated exposure to high temperatures and mechanical stress.

The scale parameter m represents the expected operating
lifetime under normal conditions and was assigned based on
relative usage patterns and criticality. These parameters enable
the simulation of reliability degradation curves, essential for
optimizing maintenance schedules.

4.1.3 Repair Impact on Reliability

The repair impact model assumes that repairs restore a
percentage of the component’s reliability. These percentages
were hypothesized based on the severity of the degradation and
the type of repair action, as shown in Table 3.

Table 3. Repair impact parameters

Component Repa.ir Impact (% %{eliability Restored)
No action Repair Replace
Gob Delivery System 0 70 100
Blank Mould 0 60 100
Blow Mould 0 60 100

4.1.4 Maintenance Costs

Maintenance costs were assigned for each component and
repair action to evaluate cost optimization. Table 4 lists the
hypothetical cost values.

Table 4. Maintenance cost parameters

Cost (€)
Component - -
No action Repair Replace
Gob Delivery System 0 300 1800
Blank Mould 0 400 1300
Blow Mould 0 400 1400

4.2 Results and Discussions

To implement the proposed predictive maintenance planning
framework, a computational tool based on VBA programming
language has been developed, utilizing algorithms to simulate
the degradation, repair, and maintenance processes for the
critical forming components over a predefined planning
horizon. The tool integrates the estimated parameters for the
Gob Delivery System, Blank Moulds, and Blow Moulds, as
presented in the case study setup (Tables 1-4). For this
analysis, a 5000-hours is considered as the planning horizon,
assuming all components are brand new at the start. The tool
dynamically updates the degradation of components based on
simulated reliability parameters. In real-world scenario, the
tool dynamically leans and updates reliability parameters
based on condition monitoring data collected on the compnent.
The tool subsequently generates optimized maintenance
schedules that effectively balance cost considerations with
reliability requirements. Key outputs include predicted
degradation curves, the reliability impact of different
maintenance strategies, and cost analyses for repair and
replacement actions, providing actionable insights for
sustainable maintenance planning in the glass forming process.

Degradation Analysis: The tool provides degradation curves
for components and the whole machine system throughout the
analysis period (Figures 5-8). These curves show the
performance over time and analyze the impact of different
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repair and replacement strategies on component reliability.
The Gob Delivery System, for example, has experienced 4
interventions (3 repairs and 1 replacement of the blades)
throughout the planning horizon. The first repair occurred on
hour 1567. This resulted in an improvement in the Gob
Delivery System’s reliability to 0.892. This demonstrates the
value of predictive maintenance interventions, as opposed to
allowing components to run to failure and then replacing them.

Gob Delivery System
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Figure 5. Degradation curve for Gob Delivery System.
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Figure 6. Degradation curve for Blank Moulds.
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Figure 7. Degradation curve for Blow Moulds.
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Figure 8. Degradation curve for Forming Machine.

Maintenance Schedule: The tool presents a predictive
maintenance schedule for each component based on
degradation and cost analysis so that manufacturers are
informed in advance for taking the necessary arrangements for
maintenance activities. Additionally, it shows statistics on
repair and replacement implemented for each component
(Figure 9). For example, during the 5000-hours planning
horizon, 13 repair/replacement interventions are expected to
be occurred (10 repairs and 3 replacements).

Maintenance Schedule

Recommended Action
Hours Repair/Replace Frequency
Gob Delivery System Blank Moulds [ Blow Moulds
1249 Repair ] i
1524 i Repair
1567 | Repar =
e e
2439 i Repair
2664 Reparr T
2739 Repalr
3350 | Repair DS B BWM

Reagy 4 3

3499 Repalr B Repair 3
Replace 1 1 1

4269

4675 | Replacement

Figure 9. Maintenance schedule and statistics.

Maintenance Cost Analysis: The tool provides detailed
analysis and insights into the maintenance cost of the machine.
It shows cumulative costs, costs per intervention, and cost
breakdown per component. For example, during the 5000-
hours planning horizon, a cumulative cost analysis is
conducted (Figure 10-a) to provide manufacturers with
insights into the intervals where higher costs are expected,
enabling them to plan the required budget for maintenance
activities accordingly. Additionally, the cost incurred for each
component is calculated (Figure 10-b), highlighting the
components that require the most expenditure. In our example,
the Blank Moulds component demands the highest cost
followed by Gob Delivery System.

(8) Overall Maintenance LCC {b) Maintenance Cost Spent per Component (€}
9000 2944.46
Cumulative Maintenance Cost 2050.00

8000  ——Maintenance Cast Spent per Interventian
2900.00
%% 2850.00

o 2800.00 5,
8 275425
+ 5000

275000
3

© 4000 2/00.00 2644.94
3000 ] 265000
2000 caf? 2600.00
000 P | | 2550.00
0 e Y 1 1Y 1 2500.00
0 1000 2000 3000 4000 3000 €000 2450.00

Gus B

)

Hours

Figure 10. Maintenance cost analysis.
5. CONCLUSION

The proposed predictive maintenance planning framework
integrates reliability analysis, cost evaluation, and advanced
optimization techniques to generate dynamic and efficient
maintenance schedules. By utilizing real-time condition
monitoring data and dynamically updating reliability
parameters, the framework ensures timely interventions,
reducing downtime and extending component lifetime. This
approach addresses the specific challenges posed by the high-
temperature and precision-driven environment of glass
forming processes, particularly for the Gob Delivery System,
Blank Moulds, and Blow Moulds.

The framework represents a significant advancement in
predictive maintenance planning for the glass industry,
offering a tailored solution that balances operational
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reliability, cost-efficiency, and sustainability. While this study
focuses on the forming stage of glass manufacturing, the
methodology demonstrates adaptability, providing potential
for extension to other stages of production. This adaptability
enhances its relevance for broader industrial applications,
particularly in high-precision, energy-intensive sectors.

Despite the feasibility demonstrated, the reliance on simulated
data in this study introduces limitations. When applied to real-
world industrial environments, the framework may require
adjustments such as incorporating industry-specific
operational constraints, integrating diverse condition
monitoring systems, and refining reliability parameters based
on empirical data to account for variability and complexity.
Future research should emphasize validating the model with
empirical data to improve its accuracy and adaptability.
Additionally, integrating this framework with advanced digital
tools, such as digital twins, could enhance real-time simulation
and optimization for predictive maintenance. Further research
could also focus on multi-objective optimization,
incorporating sustainability metrics alongside cost and
reliability, and Al-driven adaptive maintenance scheduling.
Extending this approach to other high-precision manufacturing
sectors would provide broader insights into predictive
maintenance  strategies, strengthening its  industrial
applicability.

Ultimately, this framework underscores the potential of
predictive maintenance planning in fostering more sustainable
and efficient manufacturing practices. This approach
contributes to the decarbonization of glass manufacturing,
advancing the industry’s commitment to sustainability by

aligning maintenance strategies with operational and
environmental goals.
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