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1. INTRODUCTION

Fiberglass manufacturing is a highly intricate process that 

relies on the seamless operation of components, such as 

bushings, to provide efficiency, quality, and cost-

effectiveness. However, poor maintenance routines often lead 

to unplanned downtimes, quality defects, and increased 

operational costs, all of which can jeopardize the 

competitiveness of production (de Jonge and Scarf, 2020). 

With the advent of Industry 4.0 and advanced sensor 

technologies, the increasing availability of real-time 

operational data has unlocked new opportunities for 

implementing predictive maintenance (PdM) strategies. By 

leveraging this data, manufacturers can transition from 

reactive or periodic maintenance to predictive maintenance, 

which proactively prevents failures and minimizes downtime 

and waste (Florian et al., 2021).

PdM has garnered significant attention across industries for its 

potential to improve system reliability and operational 

efficiency. Unlike traditional maintenance strategies, such as 

preventive or periodic maintenance, that often lead to over-

maintenance or insufficient resource allocation, PdM relies on 

data-driven insights to optimize maintenance schedules. This 

approach optimizes resource usage, reduces operational 

interruptions, and enhances the durability of critical 

components. For instance, PdM has been successfully 

implemented in power plants and shipbuilding, which 

demonstrates its versatility and effectiveness (Cipollini et al., 

2018; Wu et al., 2017). Despite its potential, PdM faces several 

persistent challenges, including accurately forecasting the 

performance of critical components, effectively integrating 

these insights into maintenance strategies, and optimizing 

resource-constrained maintenance schedules (Serradilla et al., 

2022). Advanced data-driven methods, such as machine 

learning and deep learning, have made significant strides in 

enabling precise performance predictions and supporting 

proactive maintenance decisions (Arena et al., 2022). These 

approaches are particularly valuable in industries where the 

performance of key components directly impacts operational 

efficiency (OE) and product quality.

However, the application of these techniques often falls short 

in addressing multi-objective optimization challenges in 

complex industrial systems. In fiberglass manufacturing, for 

instance, the performance of bushings is characterized as OE 

and plays a pivotal role in maintaining product quality and 

minimizing waste (Frederick T. Wallenberger, 2010). Poor 

bushing performance, indicated by low OE, can not only signal 

potential failures but also lead to increased glass defects and 

waste, compounding operational inefficiencies. This 

highlights the need for a more integrated approach that 

connects performance predictions with maintenance planning 

while addressing competing objectives such as cost, 

downtime, and quality.

The literature showcases numerous PdM models using data-

driven techniques. Nguyen and Medjaher (2019) developed a 

dynamic model for predicting failure probabilities, while Lee 

and Mitici (2023) applied reinforcement learning to optimize 

maintenance decisions. In fiberglass manufacturing, such 

approaches are crucial, especially for bushings, where 

performance degradation can cascade into broader 

inefficiencies and waste. Industry 4.0 has further accelerated 
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the adoption of machine learning (ML)-based PdM strategies 

to enhance system efficiency. However, selecting the proper 

algorithm for specific tasks remains a challenge. Given the 

sequential nature of furnace sensor data and the complex 

interactions among operational parameters, convolutional 

neural networks (CNN) are potential approaches for capturing 

spatial and temporal dependencies and making them practical 

for OE prediction (Zhao et al., 2017). Arena et al. (2024)

addressed this by proposing a conceptual framework for 

algorithm selection, offering guidelines based on dataset 

characteristics and learning objectives, and bridging the gap 

between theory and practical applications in PdM. Pisacane et 

al. (2021) proposed bi-objective optimization approaches to 

maximize system reliability and minimize repair times under 

resource constraints. These studies show that data-driven 

predictions and optimization frameworks can be integrated to 

improve industrial maintenance strategies. Similarly, Wang et 

al. (2024) integrated remaining useful life predictions with 

maintenance planning through deep learning and multi-

objective MILP models, which achieve cost and time 

reductions.

To address the limitations in the fiberglass industry, this study 

employs a multi-objective optimization approach with 

hierarchical priorities, which stresses the minimization of 

bushing waiting times for allocation to specific operations 

while balancing key objectives like reducing downtime and 

costs. The hierarchical prioritization enables decision-makers 

to focus on critical aspects, such as minimizing downtime, 

while still considering secondary objectives like cost 

reduction. The proposed framework's application to a 

fiberglass plant serves as a case study, demonstrating its 

applicability in enhancing operational efficiency, reducing 

costs, and improving maintenance planning.

The contributions of this study are summarized as follows:

1. A CNN model is developed to predict the OE of bushings 

based on historical/real-time data (data-driven system) 

based on key operational parameters, including oxygen 

(O2 ) flow, fuel flow, pressure, and temperature, which are 

critical indicators of furnace health affecting bushings 

performance.

2. A multi-objective mixed-integer linear programming 

(MILP) model is designed to optimize maintenance 

schedules for multiple bushings, considering costs and 

downtime (model-based system).

3. The framework is validated using real-world data from a 

fiberglass manufacturing plant.

4. The study employs multi-objective hierarchical 

optimization.

By bridging the gap between predictive analytics and 

optimization, this research contributes to the growing body of 

knowledge on PdM in manufacturing. It demonstrates that 

combining machine learning with mathematical optimization 

can yield improvements in operational efficiency and resource 

utilization, paving the way for more innovative, data-driven 

decision-making in industrial environments.

2. PROBLEM DESCRIPTION

Fiberglass production is a sophisticated process that requires 

precise coordination across multiple stages, from batch 

preparation to the final product, as depicted in Figure 1. At the 

core of this process is the furnace, where raw materials are 

melted into molten glass using heat generated by burners 

through controlled gas (e.g., natural gas or hydrogen) and O2

combustion. The molten glass is then channeled into bushings

(b1…,bm)- specialized components equipped with 

nozzles/dies. These bushings play a critical role in shaping the 

molten glass into fine fiber strands. The performance of 

bushings is influenced by factors such as molten glass 

temperature, gas and O2 flows, and pressure inside the furnace 

observed by sensors. Afterward, the strands are guided over a 

plate to ensure consistency and uniformity before being cut to 

specific lengths by choppers. The resulting fibers are grouped 

into continuous bundles, called rovings, which serve as 

essential materials for a wide range of applications, including 

automotive components, construction materials, and 

reinforcement for composites.

Figure 1. Furnace and bushings at the core of fiberglass production.

Maintaining the OE of bushings (b) is essential to supplying a 

smooth and cost-effective production process. Poorly 

performing bushings can lead to nozzle clogging, uneven fiber 

production, increased glass waste, and product defects. These 

issues not only affect production quality but also escalate 

operational costs and environmental impacts, such as 

increased energy consumption, higher raw material usage, and 

waste disposal challenges. To address these challenges, 

bushings occasionally require maintenance, which is carried 

out by operators (o) stationed at servicing centers within the 

factory. 

The time it takes for an o to begin maintenance on a bushing 

(to
b) depends on workload and scheduling, while the 

maintenance duration (do
b
) is influenced by the condition of the 

bushing. Some bushings are more critical, with assigned 

criticality levels (θb), necessitating faster attention to prevent 

disruptions in production. Operators perform maintenance 

tasks sequentially, starting with the most critical bushing based 

on its assigned θb. Each o has a limited capacity. A PdM

framework is required to monitor bushing performance using 

sensor data, predict OE and θb, and optimize maintenance 

schedules. By balancing operator capacity, servicing times, 

and bushing priorities, this framework aims to reduce waste, 
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improve product quality, and enhance the overall efficiency of 

fiberglass production.

3. MATHEMATICAL FORMULATION

This section introduces the notations and mathematical 

optimization model, which integrates CNN-based operational 

efficiency predictions to optimize maintenance schedules for 

fiberglass bushings while balancing costs and downtime 

through a multi-objective MILP framework.

3.1 Notations

In order to describe the mathematical model applied, these 

notations are introduced:

Sets 

B Set of bushings, b and 𝑏𝑏′ ∈ B

O Set of operators, o ∈ O

Parameters

to
b Time for operator o to begin 

maintenance on bushing b (hours)

do

b Maintenance duration for bushing b by 

operator o (hours)

θb Criticality level of bushing b, with 

lower values indicating higher priority 

for maintenance

co Cost associated with assigning operator 

o to a servicing (€)

ωo Maximum number of bushings 

operator o can handle sequentially 

within a period.

M A big positive number

Decision variables

Zo

b 1 if bushing b is assigned to operator o

for maintenance; 0 otherwise.

Yo

b 1 if bushing b is the first to be 

maintained by operator o; 0 otherwise.

Eo 1 if operator o is utilized for 

maintenance tasks; 0 otherwise.

X
bb

' 1 if bushing b′ is maintained after 

bushing b by the same operator; 0

otherwise.

Cb Maintenance completion time for 

bushing b (hours)

Cmax Total maintenance completion time 

across all bushings (hours)

Wmax Maximum waiting time for any 

bushing before maintenance starts

(hours)

Sb Maintenance start time for bushing b

(hours)

Ζ1 Total maintenance time (hours)

Ζ2 Total maintenance time (€)

3.2. Mathematical optimization model

The optimization model with a multi-objective approach is 

described in the following by defining the objective functions 

and constraints.

3.2.1 Objective functions

Min (Ζ1) = Cmax (1)

The first objective (1) minimizes the total maintenance 

completion time to ensure that all bushings are serviced as 

quickly as possible to reduce overall downtime.

Min (Ζ2) = ∑ co×o ∈ O Eo (2)

The second objective (2) minimizes the total cost of utilizing 

servicing operators to optimize resource allocation.

3.2.2 Constraints 

The constraints are defined as follows:

∑ Zo

b

o ∈ O =1 ∀b ∈ B (3)

Constraint (3) guarantees that each bushing (b) must be 

assigned to one operator (o) for maintenance.

Yo

b≤Zo

b ∀b ∈ B, o ∈ O (4)

Constraint (4) assures that a bushing (b) can only be the first 

bushing maintained by an operator (o) if it is assigned to that 

operator.

∑ Yo

b

b ∈ B =Eo ∀o ∈ O (5)

Constraint (5) specifies that an operator (o) is utilized only if 

they are assigned at least one bushing (b) as the first 

maintenance task.

Zo

b≤Eo ∀b ∈ B, o ∈ O (6)

Constraint (6) limits that a bushing (b) can only be assigned to 

an operator (o) if that operator is utilized.

∑ Yo

b

o ∈ O +∑ X
bb

'

b and b
'
∈ B, b≠b

' =1 ∀b ∈ B (7)

Constraint (7) restricts each bushing (b) to either being the first 

to be maintained by an operator (o) or following another 

bushing (b′) in the maintenance sequence.

∑ X
bb

'

b
'
∈ B

≤1 ∀b ∈ B, b≠b
'

(8)

Constraint (8) bounds each bushing (b) can have at most one 

preceding bushing (b′) in the maintenance sequence.

X
bb

'

+Zo

b≤1+Zo

b
'

∀b and b
'
∈ B, b≠b

'
, o ∈ O (9)

X
bb

'

+Zo

b
'

≤1+Zo

b ∀b and b
'
∈ B, b≠b

'
, o ∈ O (10)

Constraints (9-10) ensure that if a bushing (b′) is maintained 

immediately after another bushing (b) in the sequence, 

bushings must be assigned to the same operator (o). The 

constraints maintain consistency between maintenance 

sequences and operator assignments.

∑ ∑ Yo

b

o ∈ O ≤|O|b ∈B (11)

Constraint (11) guarantees that the number of bushings 

assigned as the first task across all operators (o) must be, at 

most, the total number of available operators.

X
bb

'

=0 ∀b and b
'
∈ B, b≠b

'
, if θb ≥ θ

b
' (12)

Constraint (12) guarantees that a bushing (b′) with a lower 

criticality level cannot be maintained after a bushing (b) with 

a higher or equal criticality level in the maintenance sequence.

Cb≥∑ Zo

b

o ∈ O ×(to
b+do

b
) ∀b ∈ B (13)
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Constraint (12) states that the maintenance completion time for 

each bushing (b) must account for the travel time and 

maintenance duration at the servicing operator (o) to which the 

bushing is assigned.

C
b

'≥Cb+ ∑ Zo

b
'

o ∈ O ×do

b
+ M ×(Xbb

'

-1) ∀b and b
'
∈ B, b≠b

'

(14)

Constraint (14) states that the maintenance completion time for 

bushing b' must be at least the completion time of the 

preceding bushing b plus the maintenance duration for b′

provided both bushings are maintained sequentially by the 

same operator. The term M ×(Xbb
'

-1) ensures the constraint 

only activates when b′ follows b in the sequence.

Cmax≥Cb ∀b ∈ B (15)

Constraint (15) states that the total maintenance time must be 

at least the maintenance completion time for every bushing (b), 

which guarantees it reflects the maximum completion time 

among all bushings.

∑ Zo

b

b ∈ B ≤ωo ∀o ∈ O (16)

Constraint (16) states that the number of bushings (b) assigned 

to any operator (o) must not exceed the operator's maximum 

capacity.

X
bb

'

+X
b

'
b≤1 ∀b and b

'
∈ B, b≠b

'
, o ∈ O (17)

X
bb

'

+X
b

'
b≥Zo

b+Zo

b
'

-1 ∀b and b
'
∈ B, b≠b

'
, o ∈ O (18)

Constraint (17) states that if two bushings are assigned to the 

same operator, one must be serviced before the other. Both 

cannot precede each other simultaneously. Constraint (18) 

states that if two bushings are assigned to the same operator, 

one must precede the other in the maintenance sequence.

Wmax≥Sb-to
b ∀b ∈ B, o ∈ O (19)

Constraint (19) remarks that the maximum waiting time must 

cover the waiting time for every bushing.

Cb≥Sb+(d
o

b
×Zo

b) ∀b ∈ B, o ∈ O (20)

Constraint (20) remarks that the maintenance completion time 

for each bushing must be at least its start time plus the 

maintenance duration if assigned to the operator.

4. SOLUTION METHODOLOGY

The proposed framework combines a data-driven system for 

OE prediction with a model-based optimization system for 

PdM planning, forming the data-driven PdM optimization 

model (DPdMOM) (Ning and You, 2019).

4.1 Data-driven system: CNN model

A CNN predicts the OE of bushings leveraging features such 

as O2 flow, fuel flow, pressure, and temperature (Dehghan 

Shoorkand et al., 2024). OE is classified into four zones:

1. Green (OE > n1%): No maintenance required.

2. Yellow (n2% ≤ OE ≤ n1%): Maintenance may be 

scheduled.

3. Orange (n3% ≤ OE < n2%): Close monitoring required.

4. Red (OE < n3%): Immediate maintenance needed (apart 

from production and shift changes).

Figure 2 illustrates the classification of a bushing OE into four 

zones based on performance thresholds.

Figure 2. OE zones for a bushing.

The CNN model outputs four probabilities (Pzone
b ) for each 

bushing, which indicates its likelihood of falling into each 

zone. If a bushing’s highest probability falls under the red 

zone, it is flagged for immediate maintenance. Among all 

flagged bushings in the red zone, the bushing with the highest 

probability is assigned the highest priority, which is 

represented by the smallest numerical value. This ranking 

provides the most critical bushing, which is scheduled first, 

following standard scheduling and optimization conventions 

where lower numbers indicate higher priority.

Pzone=red
b >Pzone=red

b' → θb' ≥ θb (21)

The same logic is applied to bushings in other zones (e.g., 

yellow and orange), where prioritization is based on 

probabilities. To optimize the CNN, Optuna (an open-source 

optimization framework) was utilized for hyperparameter 

tuning, leveraging two key techniques: the tree-structured 

Parzen estimator, a Bayesian optimization method that 

identifies the best hyperparameter configurations by learning 

from prior trials, and pruning, which halts underperforming 

trials early to save computational resources (Peivand et al., 

2024). Additionally, stratified k-fold cross-validation was 

applied to ensure robust performance evaluation by splitting 

the dataset into multiple folds while maintaining a proportional 

representation of all OE zones. Figure 3 shows the CNN 

hyperparameter tuning process with Optuna, optimizing 

convolutional layers, pooling, dropout rate, dense units, and 

training parameters (optimizer, batch size, epochs).

Figure 3. Hyperparameter optimization workflow for CNN using

Optuna.
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Figure 4 displays the CNN architecture for bushing OE 

prediction, transforming raw sensor data (e.g., temperature, 

pressure) through convolution, pooling, and feed-forward 

layers. The output layer classifies OE into four zones (red, 

orange, yellow, green) with associated probabilities (Pzone
b ).

Figure 4. OE prediction framework using CNN.

4.2 Model-based system: Multi-objective optimization model

The probabilities generated by the CNN are incorporated into 

a multi-objective optimization model, solved using the Gurobi 

optimization solver, to effectively schedule maintenance 

activities. The model simultaneously minimizes two 

objectives, Ζ1 and Ζ2, while subjecting to operational 

Constraints (3–21). Gurobi's model.setObjectiveN method

manages the objectives hierarchically. It prioritizes multiple 

objectives by assigning each a priority level. The solver first 

optimizes the highest-priority objective to completion. Once 

this primary goal is achieved, it proceeds to optimize 

secondary objectives without compromising the solution to the 

higher-priority goal (Gurobi Optimization, 2024). Figure 5

depicts the integrated framework combining CNN-based OE 

prediction with multi-objective optimization to prioritize and 

schedule maintenance, minimizing downtime and costs.

Figure 5. Integrated framework for data-driven PdM optimization.

5.  COMPUTATIONAL STUDY

5.1 Case study description

The case study focuses on a fiberglass manufacturing facility 

producing two products. The production process mirrors the 

general description in the problem statement, with multiple 

furnace channels, each containing several positions equipped 

with bushings. At optimal performance, the facility achieves 

high daily production volumes. However, a slight reduction in 

OE results in significant waste, which emphasizes the need to 

maintain OE. Additionally, the breakage of a single fiber 

strand compromises the associated final product, further 

exacerbating production losses. This manufacturer leverages 

the availability of large-scale sensor data, capturing 

parameters such as temperature, gas flow (natural gas), O2

flow, and pressure, which are critical to assessing bushing 

performance. These data streams enable advanced analytics to 

evaluate the criticality of each bushing, predict failures, and 

signal maintenance needs. The current situation highlights the 

pivotal role of PdM in reducing waste, minimizing defects, and 

sustaining consistent, high-quality production.

5.2 Computational results

The CNN model predicted the OE zone probabilities for 

bushing 8 as follows: red (Pzone=red
b8 = 0.0083), orange 

(Pzone=orange
b8 = 0.3402), yellow (Pzone=yellow

b8 = 0.4895), and green 

(Pzone=green
b8 = 0.1620), with fold-wise accuracies ranging from 

72% to 80% (average cross-validation accuracy of 75%). It 

indicates its classification in the yellow zone with a dominant 

probability of 48.95%. The exact process is applied to all other 

bushings, generating zone-specific probabilities that guide the 

prioritization within the optimization framework. By 

comparing the zone probabilities across bushings, the model-

based system assigns criticality levels, which delivers high-

priority bushings in critical zones (e.g., red or orange) are 

scheduled first, while lower-priority bushings, such as bushing 

8 (θb8= 5), are deferred for maintenance accordingly. Building 

on the CNN outputs (data-driven system), Figure 6 represents 

the maintenance schedule of 10 bushings distributed across 

five operators, with bars representing the start and end times 

of maintenance tasks. Each bar specifies the corresponding 

bushing's criticality level, where lower criticality levels 

indicate higher priority. Waiting times, represented on the left 

side, highlight the delays before maintenance begins for each

bushing. Figure 6 provides several insights into the 

maintenance scheduling approach. First, the criticality-based 

scheduling offers that bushings with higher priority (lower 

criticality levels, represented by smaller θb, e.g., bushing 3 

with (θb3 = 1), are scheduled earlier, which demonstrates the 

model's ability to prioritize tasks based on criticality. Second, 

there is a correlation between waiting times and θb: bushings 

with higher θb (lower priority, e.g., bushing 8 with θb8= 5) face 

longer waiting times, which reflects the scheduling strategy 

that prioritizes urgent maintenance needs lower θb while 

deferring less critical tasks. Third, operator utilization is well-

balanced, with tasks allocated across operators while adhering 

to capacity constraints, which provides resource management. 

Finally, the maintenance tasks are executed sequentially for 

each operator to avoid overlaps and optimize downtime. 

The criticality levels (θb) are informed by the data-driven 

model (CNN), which predicts OE and identifies critical 

bushings requiring attention. 

Figure 6. Criticality-aware maintenance scheduling of bushings.

The scheduling is carried out by a multi-objective optimization 

model, which employs the following objectives: minimizing 



H. Arshad  et al. / IFAC PapersOnLine 59-10 (2025) 2218–2223 2223

total maintenance completion time (

Ζ1) as the primary objective, and minimizing the servicing 

costs (Ζ2) as the secondary objective. This hierarchical 

objective setting, defined by model.setObjectiveN, seamlessly 

integrates data-driven predictions and optimization techniques 

to deliver a maintenance plan that minimizes delays and 

maximizes resource usage (e.g., operator capacity) while 

addressing urgent tasks.

6. CONCLUSIONS

This study introduces an integrated framework combining a 

CNN-based predictive model and a multi-objective 

optimization approach to enhance maintenance scheduling in 

fiberglass production. The model minimizes downtime and 

servicing costs while improving resource allocation by 

leveraging operational data to predict bushing efficiency (OE) 

and prioritizing tasks based on criticality levels. Limitations 

include uncertainties in maintenance durations, which could 

impact scheduling precision, and the effects of transitioning to 

hydrogen on OE predictions. Furthermore, enhancing CNN 

model accuracy by incorporating additional data or techniques, 

such as SMOTE versions, for handling imbalances could 

improve the accuracy of the data-driven system.
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