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Abstract: Poor maintenance practices in fiberglass manufacturing cause downtimes, quality defects, and
increased costs. This study proposes a predictive maintenance (PdM) optimization framework combining
a data-driven system, employing a convolutional neural network (CNN) model to predict bushing
operational efficiency (OE), and a model-based system that operates a multi-objective optimization
approach for scheduling maintenance. The data-driven system identifies critical bushings by predicting OE
zones, while the model-based system prioritizes tasks based on criticality levels, minimizing maintenance
completion time and servicing costs hierarchically. Results demonstrate criticality-based scheduling where
higher-priority bushings are serviced earlier, while lower-priority bushings face longer waiting times.
Operator utilization is optimized with balanced task allocation and sequential execution, ensuring efficient
resource use and minimized downtime. The integrated framework improves operational efficiency, reduces
delays, and addresses urgent tasks, which offers a robust solution for predictive maintenance in fiberglass

production.
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1. INTRODUCTION

Fiberglass manufacturing is a highly intricate process that
relies on the seamless operation of components, such as
bushings, to provide efficiency, quality, and cost-
effectiveness. However, poor maintenance routines often lead
to unplanned downtimes, quality defects, and increased
operational costs, all of which can jeopardize the
competitiveness of production (de Jonge and Scarf, 2020).
With the advent of Industry 4.0 and advanced sensor
technologies, the increasing availability of real-time
operational data has wunlocked new opportunities for
implementing predictive maintenance (PdM) strategies. By
leveraging this data, manufacturers can transition from
reactive or periodic maintenance to predictive maintenance,
which proactively prevents failures and minimizes downtime
and waste (Florian et al., 2021).

PdM has garnered significant attention across industries for its
potential to improve system reliability and operational
efficiency. Unlike traditional maintenance strategies, such as
preventive or periodic maintenance, that often lead to over-
maintenance or insufficient resource allocation, PdM relies on
data-driven insights to optimize maintenance schedules. This
approach optimizes resource usage, reduces operational
interruptions, and enhances the durability of critical
components. For instance, PdM has been successfully
implemented in power plants and shipbuilding, which
demonstrates its versatility and effectiveness (Cipollini et al.,
2018; Wuetal., 2017). Despite its potential, PAM faces several
persistent challenges, including accurately forecasting the
performance of critical components, effectively integrating

these insights into maintenance strategies, and optimizing
resource-constrained maintenance schedules (Serradilla et al.,
2022). Advanced data-driven methods, such as machine
learning and deep learning, have made significant strides in
enabling precise performance predictions and supporting
proactive maintenance decisions (Arena et al., 2022). These
approaches are particularly valuable in industries where the
performance of key components directly impacts operational
efficiency (OE) and product quality.

However, the application of these techniques often falls short
in addressing multi-objective optimization challenges in
complex industrial systems. In fiberglass manufacturing, for
instance, the performance of bushings is characterized as OE
and plays a pivotal role in maintaining product quality and
minimizing waste (Frederick T. Wallenberger, 2010). Poor
bushing performance, indicated by low OE, can not only signal
potential failures but also lead to increased glass defects and
waste, compounding operational inefficiencies. This
highlights the need for a more integrated approach that
connects performance predictions with maintenance planning
while addressing competing objectives such as cost,
downtime, and quality.

The literature showcases numerous PdM models using data-
driven techniques. Nguyen and Medjaher (2019) developed a
dynamic model for predicting failure probabilities, while Lee
and Mitici (2023) applied reinforcement learning to optimize
maintenance decisions. In fiberglass manufacturing, such
approaches are crucial, especially for bushings, where
performance degradation can cascade into broader
inefficiencies and waste. Industry 4.0 has further accelerated
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the adoption of machine learning (ML)-based PdM strategies
to enhance system efficiency. However, selecting the proper
algorithm for specific tasks remains a challenge. Given the
sequential nature of furnace sensor data and the complex
interactions among operational parameters, convolutional
neural networks (CNN) are potential approaches for capturing
spatial and temporal dependencies and making them practical
for OE prediction (Zhao et al., 2017). Arena et al. (2024)
addressed this by proposing a conceptual framework for
algorithm selection, offering guidelines based on dataset
characteristics and learning objectives, and bridging the gap
between theory and practical applications in PdM. Pisacane et
al. (2021) proposed bi-objective optimization approaches to
maximize system reliability and minimize repair times under
resource constraints. These studies show that data-driven
predictions and optimization frameworks can be integrated to
improve industrial maintenance strategies. Similarly, Wang et
al. (2024) integrated remaining useful life predictions with
maintenance planning through deep learning and multi-
objective MILP models, which achieve cost and time
reductions.

To address the limitations in the fiberglass industry, this study
employs a multi-objective optimization approach with
hierarchical priorities, which stresses the minimization of
bushing waiting times for allocation to specific operations
while balancing key objectives like reducing downtime and
costs. The hierarchical prioritization enables decision-makers
to focus on critical aspects, such as minimizing downtime,
while still considering secondary objectives like cost
reduction. The proposed framework's application to a
fiberglass plant serves as a case study, demonstrating its
applicability in enhancing operational efficiency, reducing
costs, and improving maintenance planning.

The contributions of this study are summarized as follows:

1. A CNN model is developed to predict the OE of bushings
based on historical/real-time data (data-driven system)
based on key operational parameters, including oxygen
(O2) flow, fuel flow, pressure, and temperature, which are
critical indicators of furnace health affecting bushings
performance.

2. A multi-objective mixed-integer linear programming
(MILP) model is designed to optimize maintenance
schedules for multiple bushings, considering costs and
downtime (model-based system).

3. The framework is validated using real-world data from a
fiberglass manufacturing plant.

4. The study
optimization.

employs multi-objective  hierarchical

By bridging the gap between predictive analytics and
optimization, this research contributes to the growing body of
knowledge on PdM in manufacturing. It demonstrates that
combining machine learning with mathematical optimization
can yield improvements in operational efficiency and resource
utilization, paving the way for more innovative, data-driven
decision-making in industrial environments.
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2. PROBLEM DESCRIPTION

Fiberglass production is a sophisticated process that requires
precise coordination across multiple stages, from batch
preparation to the final product, as depicted in Figure 1. At the
core of this process is the furnace, where raw materials are
melted into molten glass using heat generated by burners
through controlled gas (e.g., natural gas or hydrogen) and O,
combustion. The molten glass is then channeled into bushings
(b1...,bm)-  specialized  components equipped  with
nozzles/dies. These bushings play a critical role in shaping the
molten glass into fine fiber strands. The performance of
bushings is influenced by factors such as molten glass
temperature, gas and O» flows, and pressure inside the furnace
observed by sensors. Afterward, the strands are guided over a
plate to ensure consistency and uniformity before being cut to
specific lengths by choppers. The resulting fibers are grouped
into continuous bundles, called rovings, which serve as
essential materials for a wide range of applications, including

automotive components, construction materials, and
reinforcement for composites.
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Figure 1. Furnace and bushings at the core of fiberglass production.

Maintaining the OE of bushings (b) is essential to supplying a
smooth and cost-effective production process. Poorly
performing bushings can lead to nozzle clogging, uneven fiber
production, increased glass waste, and product defects. These
issues not only affect production quality but also escalate
operational costs and environmental impacts, such as
increased energy consumption, higher raw material usage, and
waste disposal challenges. To address these challenges,
bushings occasionally require maintenance, which is carried
out by operators (o) stationed at servicing centers within the
factory.

The time it takes for an o to begin maintenance on a bushing
(%)) depends on workload and scheduling, while the
maintenance duration (dg) is influenced by the condition of the
bushing. Some bushings are more critical, with assigned
criticality levels (6,), necessitating faster attention to prevent
disruptions in production. Operators perform maintenance
tasks sequentially, starting with the most critical bushing based
on its assigned 6,. Each o has a limited capacity. A PdM
framework is required to monitor bushing performance using
sensor data, predict OE and 6,, and optimize maintenance
schedules. By balancing operator capacity, servicing times,
and bushing priorities, this framework aims to reduce waste,
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improve product quality, and enhance the overall efficiency of
fiberglass production.

3. MATHEMATICAL FORMULATION

This section introduces the notations and mathematical
optimization model, which integrates CNN-based operational
efficiency predictions to optimize maintenance schedules for
fiberglass bushings while balancing costs and downtime

through a multi-objective MILP framework.

3.1 Notations

In order to describe the mathematical model applied, these
notations are introduced:

Sets

B Set of bushings, b and b’ € B

o Set of operators, o € O

Parameters

& Time for operator o to begin
maintenance on bushing b (hours)

& Maintenance duration for bushing b by
operator o (hours)

0, Criticality level of bushing b, with
lower values indicating higher priority
for maintenance

C, Cost associated with assigning operator
o to a servicing (€)

, Maximum number of bushings
operator o can handle sequentially
within a period.

M A big positive number

Decision variables

7

0

1 if bushing b is assigned to operator o
for maintenance; 0 otherwise.

Y 1 if bushing b is the first to be
maintained by operator o; 0 otherwise.

E, 1 if operator o is utilized for
maintenance tasks; 0 otherwise.

Xbb' 1 if bushing b’ is maintained after
bushing b by the same operator; 0
otherwise.

G, Maintenance completion time for
bushing b (hours)

Chrax Total maintenance completion time
across all bushings (hours)

W Maximum waiting time for any
bushing before maintenance starts
(hours)

Sy Maintenance start time for bushing b
(hours)

Z, Total maintenance time (hours)

Z, Total maintenance time (€)

3.2. Mathematical optimization model

The optimization model with a multi-objective approach is
described in the following by defining the objective functions

and constraints.

3.2.1 Objective functions

Min (Zl) = Cmax

(M
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The first objective (1) minimizes the total maintenance
completion time to ensure that all bushings are serviced as
quickly as possible to reduce overall downtime.

Min (Z,) =X, 0¢* E, 2)

The second objective (2) minimizes the total cost of utilizing
servicing operators to optimize resource allocation.

3.2.2 Constraints
The constraints are defined as follows:

YocoZo=1 VbEB 3)

Constraint (3) guarantees that each bushing (b) must be
assigned to one operator (o) for maintenance.

Y'<zt vbeB,oeO 4)

Constraint (4) assures that a bushing (b) can only be the first
bushing maintained by an operator (o) if it is assigned to that
operator.

YrenY=E, (5)

Constraint (5) specifies that an operator (o) is utilized only if
they are assigned at least one bushing (b) as the first
maintenance task.

Yo €O

Zb<E, VbEB,0€0 (6)

Constraint (6) limits that a bushing (b) can only be assigned to
an operator (o) if that operator is utilized.

b _
2060Yg+zhandb'e3,b¢b'Xh =1 VbEB Q)

Constraint (7) restricts each bushing () to either being the first
to be maintained by an operator (o) or following another
bushing (b") in the maintenance sequence.

Y, X<l VbeB, bh ®)

Constraint (8) bounds each bushing (») can have at most one
preceding bushing (') in the maintenance sequence.

XP1Z2<1+78 Vband b€ B, b#b, 0 € O )

(10)

Constraints (9-10) ensure that if a bushing (5) is maintained
immediately after another bushing (b) in the sequence,
bushings must be assigned to the same operator (o). The
constraints maintain consistency between maintenance
sequences and operator assignments.

YhesXoco Yo<IOl (11)

Constraint (11) guarantees that the number of bushings
assigned as the first task across all operators (o) must be, at
most, the total number of available operators.

X=0 (12)

Constraint (12) guarantees that a bushing (b') with a lower
criticality level cannot be maintained after a bushing (b) with
a higher or equal criticality level in the maintenance sequence.

(13)

X172 <1470 Vband '€ B, b#b, 0 € O

Vband b'e€ B, b#b ,if 0, > 0,

C>Yoe0ZoX(+d))  VhEB
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Constraint (12) states that the maintenance completion time for
each bushing (b) must account for the travel time and
maintenance duration at the servicing operator (o) to which the
bushing is assigned.

C,2Cyt e 0t xdit MX(X-1)  Wband b'€ B, bb
(14)

Constraint (14) states that the maintenance completion time for
bushing b’ must be at least the completion time of the
preceding bushing b plus the maintenance duration for b’
provided both bushings are maintained sequentially by the

same operator. The term M x(X?” -1) ensures the constraint
only activates when b’ follows b in the sequence.

Cpu>Cy VbEB (15)

Constraint (15) states that the total maintenance time must be
at least the maintenance completion time for every bushing (b),
which guarantees it reflects the maximum completion time
among all bushings.

YrenZo<o, (16)

Constraint (16) states that the number of bushings () assigned
to any operator (0) must not exceed the operator's maximum
capacity.

X 4xPP<]  Vbandb'€ B, b#b .0 € O (17)
DA L I (18)

Constraint (17) states that if two bushings are assigned to the
same operator, one must be serviced before the other. Both
cannot precede each other simultaneously. Constraint (18)
states that if two bushings are assigned to the same operator,
one must precede the other in the maintenance sequence.

Yo €O

Vvband b€ B, b#b, 0 € O

Wyax>Sp-t2 Vb€ B,0 €O

max—

(19)

Constraint (19) remarks that the maximum waiting time must
cover the waiting time for every bushing.

Cy=SyH(d'*xZ)) VbEB,0o€O (20)

Constraint (20) remarks that the maintenance completion time
for each bushing must be at least its start time plus the
maintenance duration if assigned to the operator.

4. SOLUTION METHODOLOGY

The proposed framework combines a data-driven system for
OE prediction with a model-based optimization system for
PdM planning, forming the data-driven PdM optimization
model (DPAMOM) (Ning and You, 2019).

4.1 Data-driven system: CNN model

A CNN predicts the OE of bushings leveraging features such

as O, flow, fuel flow, pressure, and temperature (Dehghan

Shoorkand et al., 2024). OE is classified into four zones:

1. Green (OE > n,%): No maintenance required.

2. Yellow (m% < OE < mni%): Maintenance may be
scheduled.

3. Orange (n3% < OE < n,%): Close monitoring required.

4. Red (OE < n3%): Immediate maintenance needed (apart
from production and shift changes).
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Figure 2 illustrates the classification of a bushing OE into four
zones based on performance thresholds.

Time (hour)

Figure 2. OE zones for a bushing.

The CNN model outputs four probabilities (P%,,.) for each
bushing, which indicates its likelihood of falling into each
zone. If a bushing’s highest probability falls under the red
zone, it is flagged for immediate maintenance. Among all
flagged bushings in the red zone, the bushing with the highest
probability is assigned the highest priority, which is
represented by the smallest numerical value. This ranking
provides the most critical bushing, which is scheduled first,
following standard scheduling and optimization conventions
where lower numbers indicate higher priority.

Pgonezred>PZ)nezred - eb' 2 0[, (21)

The same logic is applied to bushings in other zones (e.g.,
yellow and orange), where prioritization is based on
probabilities. To optimize the CNN, Optuna (an open-source
optimization framework) was utilized for hyperparameter
tuning, leveraging two key techniques: the tree-structured
Parzen estimator, a Bayesian optimization method that
identifies the best hyperparameter configurations by learning
from prior trials, and pruning, which halts underperforming
trials early to save computational resources (Peivand et al.,
2024). Additionally, stratified k-fold cross-validation was
applied to ensure robust performance evaluation by splitting
the dataset into multiple folds while maintaining a proportional
representation of all OE zones. Figure 3 shows the CNN
hyperparameter tuning process with Optuna, optimizing
convolutional layers, pooling, dropout rate, dense units, and
training parameters (optimizer, batch size, epochs).

« {'n_filters_1" 96, 'n_filters_2": 192, 'kernel_size": 7}
= {'pooling_type": 'max, 'pool_size’: 3}
« {'dropout_rate': 0.356841315470779367}

Optuna

«  {'dense_units': 96}

. {'optimizer': 'nadam’, 'batch_size": 64, 'epochs’: 194}

Figure 3. Hypearameter optimization workflow for CNN using
Optuna.
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Figure 4 displays the CNN architecture for bushing OE
prediction, transforming raw sensor data (e.g., temperature,
pressure) through convolution, pooling, and feed-forward
layers. The output layer classifies OE into four zones (red,

orange, yellow, green) with associated probabilities (P2, ).
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Figure 4. OE prediction framework using CNN.
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4.2 Model-based system: Multi-objective optimization model

The probabilities generated by the CNN are incorporated into
a multi-objective optimization model, solved using the Gurobi
optimization solver, to effectively schedule maintenance
activities. The model simultanecously minimizes two
objectives, Z; and Z,, while subjecting to operational
Constraints (3-21). Gurobi's model.setObjectiveN method
manages the objectives hierarchically. It prioritizes multiple
objectives by assigning each a priority level. The solver first
optimizes the highest-priority objective to completion. Once
this primary goal is achieved, it proceeds to optimize
secondary objectives without compromising the solution to the
higher-priority goal (Gurobi Optimization, 2024). Figure 5
depicts the integrated framework combining CNN-based OE
prediction with multi-objective optimization to prioritize and
schedule maintenance, minimizing downtime and costs.

DPdMOM
Model-Based System

(Maintenance Optimization)

Data-Driven System [0

(OE Prediction)
via CNN

via Mathematical Programming

Figure 5. Integrated framework for data-driven PdM optimization.

5. COMPUTATIONAL STUDY
5.1 Case study description

The case study focuses on a fiberglass manufacturing facility
producing two products. The production process mirrors the
general description in the problem statement, with multiple
furnace channels, each containing several positions equipped
with bushings. At optimal performance, the facility achieves
high daily production volumes. However, a slight reduction in
OE results in significant waste, which emphasizes the need to
maintain OE. Additionally, the breakage of a single fiber
strand compromises the associated final product, further
exacerbating production losses. This manufacturer leverages
the availability of large-scale sensor data, capturing
parameters such as temperature, gas flow (natural gas), O
flow, and pressure, which are critical to assessing bushing
performance. These data streams enable advanced analytics to
evaluate the criticality of each bushing, predict failures, and
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signal maintenance needs. The current situation highlights the
pivotal role of PAM in reducing waste, minimizing defects, and
sustaining consistent, high-quality production.

5.2 Computational results

The CNN model predicted the OE zone probabilities for
bs = 0.0083), orange

zone=red

=0.4895), and green

(Plz’gne:greef 0.1620), with fold-wise accuracies ranging from
72% to 80% (average cross-validation accuracy of 75%). It
indicates its classification in the yellow zone with a dominant
probability of 48.95%. The exact process is applied to all other
bushings, generating zone-specific probabilities that guide the
prioritization within the optimization framework. By
comparing the zone probabilities across bushings, the model-
based system assigns criticality levels, which delivers high-
priority bushings in critical zones (e.g., red or orange) are
scheduled first, while lower-priority bushings, such as bushing
8 (Op,=S), are deferred for maintenance accordingly. Building
on the CNN outputs (data-driven system), Figure 6 represents
the maintenance schedule of 10 bushings distributed across
five operators, with bars representing the start and end times
of maintenance tasks. Each bar specifies the corresponding
bushing's criticality level, where lower criticality levels
indicate higher priority. Waiting times, represented on the left
side, highlight the delays before maintenance begins for each
bushing. Figure 6 provides several insights into the
maintenance scheduling approach. First, the criticality-based
scheduling offers that bushings with higher priority (lower
criticality levels, represented by smaller 6,, e.g., bushing 3
with (6, = 1), are scheduled earlier, which demonstrates the
model's ability to prioritize tasks based on criticality. Second,
there is a correlation between waiting times and 6,: bushings
with higher 6, (lower priority, e.g., bushing 8 with ,,= 5) face
longer waiting times, which reflects the scheduling strategy
that prioritizes urgent maintenance needs lower 6, while
deferring less critical tasks. Third, operator utilization is well-
balanced, with tasks allocated across operators while adhering
to capacity constraints, which provides resource management.
Finally, the maintenance tasks are executed sequentially for
each operator to avoid overlaps and optimize downtime.

The criticality levels (6;,) are informed by the data-driven
model (CNN), which predicts OE and identifies critical
bushings requiring attention.

bushing 8 as follows: red (P
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Figure 6. Criticality-aware maintenance scheduling of bushings.

The scheduling is carried out by a multi-objective optimization
model, which employs the following objectives: minimizing
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total maintenance completion time (
Z,) as the primary objective, and minimizing the servicing
costs (Z,) as the secondary objective. This hierarchical
objective setting, defined by model.setObjectiveN, seamlessly
integrates data-driven predictions and optimization techniques
to deliver a maintenance plan that minimizes delays and
maximizes resource usage (e.g., operator capacity) while
addressing urgent tasks.
6. CONCLUSIONS

This study introduces an integrated framework combining a
CNN-based predictive model and a multi-objective
optimization approach to enhance maintenance scheduling in
fiberglass production. The model minimizes downtime and
servicing costs while improving resource allocation by
leveraging operational data to predict bushing efficiency (OE)
and prioritizing tasks based on criticality levels. Limitations
include uncertainties in maintenance durations, which could
impact scheduling precision, and the effects of transitioning to
hydrogen on OE predictions. Furthermore, enhancing CNN
model accuracy by incorporating additional data or techniques,
such as SMOTE versions, for handling imbalances could
improve the accuracy of the data-driven system.
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