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Traditionally, supply chain design in the glass industry has 

been driven by economic and environmental priorities, 

focusing on minimizing costs and CO2 emissions to improve 

operational efficiency (Pourjavad and Mayorga, 2018). 

However, rising pressures from regulatory bodies, alongside 

growing environmental concerns, e.g., resource depletion, 

have expanded the need for a broader approach that includes 

managing other sources of emissions (e.g., NOx) and 

addressing high energy demands (Hartwell et al., 2022). For 

hard-to-abate sectors like glass manufacturing, these 

challenges call for practical strategies that incorporate cleaner 

energy sources, e.g., GH, while optimizing the supply chain to 

balance environmental and economic objectives.

This study advances sustainable supply chain (SSC) practices 

by developing a CLSC model tailored to the glass industry, 

addressing economic, environmental, and energy objectives. It 

builds on prior work that integrates sustainability into supply 

chain design and highlights the benefits of managing forward 

and reverse flows under uncertainty to improve efficiency and 

environmental outcomes (Borumand et al., 2024; Sadjady 

Naeeni and Sabbaghi, 2022). 

CLSC networks offer a promising strategy for enhancing 

sustainability in glass production by collecting and 

reprocessing post-consumer and industrial glass waste, thus 

As global industries shift towards sustainable practices, the 

glass manufacturing sector faces unique challenges and 

opportunities to reduce its environmental footprint while 

meeting regulatory demands. Glass production, such as 

fiberglass, is a high-energy, emission-intensive process that 

requires substantial inputs of raw materials and fuel (Lima et 

al., 2024). This process emits substantial quantities of CO2 for 

each unit of glass melted, along with NOx and other pollutants, 

which contribute to air pollution and pose health risks (Hubert, 

2021).

1. INTRODUCTION

Building on these sustainability strategies, addressing 

uncertainties in demand and recycling rates (i.e., rate of return) 

is essential to maintaining CLSC operations in glass 

manufacturing. Demand fluctuations can affect cullet 

requirements, while variations in recycling rates can impact its 

availability, which influences batch composition and 

potentially increases reliance on raw materials (Peng et al., 

2020). To further strengthen the supply chain, the model 

considers backup batch suppliers to safeguard against potential 

Our model adopts a hybrid fuel approach, balancing the cost-

effectiveness of NG with the lower emissions profile of GH. 

By using GH, which has the most significant environmental 

impact, the model can present emission reductions while 

keeping overall costs lower. This combined approach can 

enable glass manufacturers to align emissions reduction 

targets with economic feasibility, supporting a more 

sustainable yet practical pathway toward decarbonization in 

the glass industry (Everling, 2022).

reducing reliance on raw materials and conserving energy

(Lozano-Oviedo et al., 2024). Efficient sorting and processing 

in these systems help preserve high-quality glass fibers, which 

are essential for fiberglass production. For example, 

companies like Owens Corning recycle glass fibers into new 

products, demonstrating the practical impact of CLSC 

networks in minimizing waste and supporting environmentally 

responsible production (Corning, 2022). Moreover, 

incorporating recycled glass, or cullet, into batch compositions 

can significantly reduce energy consumption, as the cullet 

melts at lower temperatures than raw materials. For example,

100% cullet can reduce energy needs by approximately 29%, 

from 2.671 GJ per tonne to 1.886 GJ per tonne. Additionally, 

every 10% increase in cullet usage decreases energy 

consumption by 2–3% and CO2 emissions by around 5%. 

These benefits highlight the potential of the cullet to lower 

emissions and reduce reliance on non-renewable resources in 

glass production (M Kovacec, 2011).
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disruptions (Ziari and Sajadieh, 2022). This proactive 

approach is particularly relevant given the impact of recent 

disruptions on global supply chains, as seen in industries like 

Italian ceramics, where nearshoring and reshoring of suppliers 

were employed to address shortages and mitigate geopolitical 

risks (Fernández-Miguel et al., 2022). The model bolsters 

network resilience by incorporating adaptive sourcing 

strategies like backup strategies, guaranteeing consistent 

access to raw materials and flexible batch compositions-

critical for sustainable glass manufacturing in an 

interconnected world. However, existing studies mainly focus 

on cost and CO₂ emissions, often overlooking NOx, energy 

diversification, and supply chain disruptions in glass 

manufacturing. This study addresses these gaps by answering: 

(1) How can a CLSC model optimize cost, energy, and 

emissions trade-offs? (2) What is the role of cullet and hybrid 

fuels in balancing sustainability and feasibility? (3) How can 

supply chain resilience be enhanced under demand and 

recycling uncertainties?

To achieve a balanced and sustainable CLSC design in glass 

manufacturing, this study applies a multi-objective MILP 

model that integrates economic, environmental, and energy 

objectives. Using an LP-metric optimization framework, the 

model constructs a Pareto frontier, which gives decision-

makers a view of trade-offs across cost, energy use, and 

emissions. This method enables flexibility in prioritizing 

objectives to support an optimal balance. Additionally, 

demand and recycling rate uncertainties are addressed through 

a two-stage stochastic model, which enhances robustness by 

planning for variations and how strategic decisions inform 

operational decisions (John R. Birge 2011). Disruptions 

among batch suppliers are managed with a stochastic p-robust 

technique, which secures network resilience and feasibility 

even under diverse scenarios (Mazidi et al., 2019). These 

approaches not only can provide a perspective on SSC design 

but also can guarantee adaptability and reliability in the face 

of real-world complexities.

2. PROBLEM DESCRIPTION

Figure 1 depicts a multi-product CLSC network for glass 

manufacturing. The supply chain starts with batch suppliers (b) 

delivering raw materials to batch facilities (k), with backup 

suppliers (n) ensuring supply during disruptions. Batch 

facilities blend raw materials with cullet from defective glass

(scrap/ production waste) from recycling centers (l) to create 

compositions for glass furnaces (i), which produce glass 

products for customer zones (j). The network incorporates 

external cullet from recycling centers and internal cullet from 

production waste. The CLSC includes a reverse flow of cullet 

from customer zones to recycling centers (l), where it is 

processed and sent to batch facilities. The model optimizes 

forward flows (raw materials to batch houses, furnaces, and 

customers) and reverse flows (cullet from customers to 

recycling centers and batch houses). It addresses demand and 

recycling uncertainties while enhancing resilience through 

alternative sourcing for batch suppliers during disruptions.

Glass furnaces (i) in the CLSC use GH and NG for melting, 

combining energy efficiency with reduced greenhouse gas 

emissions, as GH serves as a low-emission alternative to NG.

Figure 1. A conceptual framework for the CLSC network.

3. MATHEMATICAL FORMULATION

This section outlines the notations and multi-objective MILP 

model within a two-stage stochastic framework to design a 

resilient, sustainable CLSC for glass production. The model 

optimizes costs, emissions, and energy consumption while 

improving resilience to demand fluctuations, recycling 

variability, and supplier disruptions.

3.1 Notations

Sets 

I Set of furnaces, i ∈ I

K Set of batch houses, k ∈ K

B Set of batch suppliers, b ∈ B

N Set of backup batch suppliers, n ∈ N

L Set of recycling centers, l ∈ L

J Set of customer zones, j ∈ J

P Set of product types, p ∈ P

C Set of energy sources, c ∈ C

R Set of raw materials, r ∈ R

DEM Set of demand scenarios, dem ∈ DEM

REC Set of recycling scenarios, rec ∈ REC

DIS Set of disruption scenarios, dis ∈ DIS

Parameters

ci, ck, cb, cn, cl Fixed cost of operating facilities i, k, b,

n, l (€)

tci, tcj, tcl, tcb,

tcn, tck

Unit transportation cost from i, j, l, b,

n, k (€)

pc
i
, pc

l
, pc

b
, pc

n
,

pc
k

Processing cost per unit in facilities i, l,

b, n, c, K (€)

diij, dijl, dilk,

dibk, dink, diki, 

diik

Distance between two different 

facilities (km)

enc Energy cost per kWh for c (€)

ξc Energy consumption for melting cullet 

using c (kWh/kg)

ϑrc Energy consumption for melting r

using c (kWh/kg)

η CO₂ emissions per kg of cullet (kg)

ςr CO₂ emissions per kg of r (kg)

cemc CO₂ emissions per kWh for 

combustion of c (kg)

nemc NOx emissions per kWh for 

combustion of c (kg)

djp Annual demand for p in j (kg) 

β
jp

Recycling rate for p in j

devjp Deviation rates for recycling for p in j
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devjp
' Deviation rates for demand for p in j

devb
'' Deviation rates for disruption in b

prob
jp

rec Recycling probabilities for rec in j for

p

prob
jp

dem Demand probabilities for dem in j for p

prob
b

dis Disruption probabilities for dis in b

αip Conversion factor for defective glass to 

cullet for p in i (kg)

γ
i

Conversion factor for cullet to molten 

glass in i

ψ
i

Conversion factor for defective glass to 

molten glass in i

ϕ
i

Conversion factor for finished product 

to molten glass in i

τi Conversion factor for raw material to 

molten glass in i

πk Capacity for batch house k (kg)

πr Capacity for r in k (kg)

μ
b

Capacity for b (kg)

μ
n

Capacity for n (kg)

δl Capacity for l (kg)

minri, maxri Minimum and maximum annual 

consumption for r per i (kg)

ωi Molten glass production capacity per i 

(kg)

mini, maxi Minimum and maximum annual usage 

of cullet per i (kg)

ρ Confidence level

Decision 

variables

Xijp
dem,rec,dis Flow of p from i to j under scenario 

dem, rec, and dis (kg)

Ajlp
dem,rec,dis Flow of defective glass from j to l

under scenario dem, rec, and dis (kg)

Dlk
dem,rec,dis Flow of cullet from l to k under 

scenario dem, rec, and dis (kg)

Erbk
dem,rec,dis Flow of r from b to k under scenario 

dem, rec, and dis (kg)

Ernk
',dem,rec,dis Flow of r from n to k under scenario 

dem, rec, and dis (kg)

Fik
dem,rec,dis Flow of cullet from i to k under 

scenario dem, rec, and dis (kg)

Gikp
dem,rec,dis Flow of defective glass p from i to k

under scenario dem, rec, and dis (kg)

Q
rki

dem,rec,dis Flow of r from k to i under scenario 

dem, rec, and dis (kg)

Mki
dem,rec,dis Flow of cullet from k to i under 

scenario dem, rec, and dis (kg)

TCdem,rec,dis Total cost under scenario dem, rec, and 

dis (€) 

TENdem,rec,dis Total energy under scenario dem, rec, 

and dis (kWh) 

TEMdem,rec,dis Total emission under scenario dem, 

rec, and dis (kg) 

Ζ1 Total cost (€)

Ζ2 Total energy (kWh)

Ζ3 Total emission (kg)

Yi 1 if a potential furnace i operates; 0, 

otherwise.

Uk 1 if a potential batch house k operates; 

0, otherwise.

Vb 1 if a potential batch supplier b

operates; 0, otherwise.

Ol 1 if a potential recycling center l

operates; 0, otherwise.

Vn
' 1 if a potential backup batch supplier l 

operates; 0, otherwise.

∆b
dis 1 if a disruption (dis) happens in b; 0, 

otherwise.

3.2. Mathematical optimization model

The two-stage ρ-robust stochastic optimization model with a 

multi-objective approach is defined as follows:

3.2.1 Objective functions

Min (Ζ1) = 

∑ ∑ ∑ ∑ ∑ ∑ (prob
b

dis×rec ∈ RECdem ∈ DEMdis ∈ DISp ∈ Pj ∈ Jb ∈ B prob
jp

dem×

prob
jp

rec
×TCdem,rec,dis) (1)

TCdem,rec,dis=

∑ (c
i
×Yi)i ∈ I + ∑ (c

k
×Uk)k ∈ K + ∑ (c

b
×Vb)b ∈ B + ∑ (c

l
×Ol)+l ∈ L

∑ (c
n
×Vn

' )n ∈ N + ∑ ∑ ∑ (tci×diij+pci)×p ∈ Pj ∈ Ji ∈ I Xijp
dem,rec,dis

+

∑ ∑ ∑ (tcj×dijl)×p ∈ Pl ∈ Lj ∈ J Ajlp
dem,rec,dis

+

∑ ∑ (tcl×dilk+pcl)×Dlk
dem,rec,dis

k ∈ Kl ∈ L +

∑ ∑ (tci×diik+pc
k
)×Fik

dem,rec,dis
k ∈ Ki ∈ I +

∑ ∑ ∑ (tci×diik+pc
k
)×𝛼𝛼ip×p ∈ Pk ∈ Ki ∈ I Gikp

dem,rec,dis
+

∑ ∑ ∑ (tcb×dibk+pck
)×k ∈ Kb ∈ Br ∈ R Erbk

dem,rec,dis
+

∑ ∑ ∑ (tcn×dink+pck
)×k ∈ Kn ∈ Nr ∈ R Ernk

',dem,rec,dis
+

∑ ∑ ∑ (tck×diki+pci
)×i ∈ Ik ∈ Kr ∈ R Q

rki

dem,rec,dis+

∑ ∑ (tck×diki+pci
)×Mki

dem,rec,dis
i ∈ Ik ∈ K +

∑ ∑ ∑ ∑ ∑ (enc×ξc)×(Fik
dem,rec,dis

+αip×G
ikp

dem,rec,dis +l ∈ Lp ∈ Pk ∈ Ki ∈ Ic ∈ C

Dlk
dem,rec,dis)+ ∑ ∑ ∑ ∑ (enc×ϑrc)×r ∈ Rk ∈ Ki ∈ I Q

rki

dem,rec,dis
c ∈ C

∀dem ∈ DEM, rec ∈ REC, dis ∈ DIS (2)

The first objective function (1) minimizes the total cost of the 

CLSC network, considering the present value of costs across 

demand, recycling, and disruption scenarios, each weighted by 

its probability of occurrence. The term TCdem,rec,dis in 

Constraint (2) provides a breakdown of total costs for each 

scenario combination, which the objective function then seeks 

to minimize.

Min(Ζ2)=

∑ ∑ ∑ ∑ ∑ ∑ (prob
b

dis×rec ∈ RECdem ∈ DEMdis ∈ DISp ∈ Pj ∈ Jb ∈ B prob
jp

dem×

prob
jp

rec
×

TENdem,rec,dis) (3)

TEMdem,rec,dis =
∑ ∑ ∑ ∑ ∑ ξc×(Fik

dem,rec,dis
+αip×G

ikp

dem,rec,dis +l ∈ Lp ∈ Pk ∈ Ki ∈ Ic ∈ C

Dlk
dem,rec,dis)+ ∑ ∑ ∑ ∑ 𝜗𝜗rc×r ∈ Rk ∈ Ki ∈ I Q

rki

dem,rec,dis
c ∈ C

∀dem ∈ DEM, rec ∈ REC, dis ∈ DIS (4)

The second objective function (3) minimizes the total energy 

consumption across furnaces (i), accounting for demand, 

recycling, and disruption scenarios, each weighted by its 

probability. Constraint (4) calculates total energy 

consumption, including the energy used to melt raw materials 

(r) and cullet. The term TENdem,rec,dis provides the total energy 

for each scenario.



H. Arshad  et al. / IFAC PapersOnLine 59-10 (2025) 184–189 187

Min(Ζ3)=

∑ ∑ ∑ ∑ ∑ ∑ (prob
b

dis
×rec ∈ RECdem ∈ DEMdis ∈ DISp ∈ Pj ∈ Jb ∈ B prob

jp

dem
×

prob
jp

rec
×TEMdem,rec,dis) (5)

TEMdem,rec,dis =
∑ ∑ ∑ ∑ ∑ (ξ

c
×(cem

c
+nemc))×(Fik

dem,rec,dis
+𝛼𝛼ip×G

ikp

dem,rec,dis +l ∈ Lp ∈ Pk ∈ Ki ∈ Ic ∈ C

Dlk
dem,rec,dis)+ ∑ ∑ ∑ ∑ (ϑrc×(cem

c
+nemc))×r ∈ Rk ∈ Ki ∈ I Q

rki

dem,rec,dis
+c ∈ C

∑ ∑ ∑ ∑ η×r ∈ Rk ∈ Ki ∈ I (Fik
dem,rec,dis

+𝛼𝛼ip×G
ikp

dem,rec,dis+Dlk
dem,rec,dis)+c ∈ C

∑ ∑ ∑ ςr×i ∈ Ik ∈ Kr ∈ R Q
rki

dem,rec,dis

∀dem ∈ DEM, rec ∈ REC, dis ∈ DIS (6)

The third objective function minimizes total emissions across 

furnaces (i), accounting for demand, recycling, and disruption 

scenarios weighted by their probabilities. Constraint (6) 

computes emissions from raw materials and cullet (process 

emissions) and energy use (consumption emissions). The 

term TEMdem,rec,dis in Constraint (6) represents scenario-

specific total emissions targeted for minimization.

3.2.2 Constraints 

∑ Xijp
dem,rec,dis

i ∈ I ≥devjp
'

×djp

∀ j ∈ J, p ∈ P, dem ∈ DEM, rec ∈ REC, dis ∈ DIS (7)

Constraint (7) ensures that product supply meets demand 

across scenarios.

∑ Ajlp
dem,rec,dis

l ∈ L = devjp
'

×djp×𝛽𝛽jp×devjp

∀ j ∈ J, p ∈ P, dem ∈ DEM, rec ∈ REC, dis ∈ DIS (8)

Constraint (8) ensures that defective products are sent to 

recycling centers based on specific recycling rates under 

various scenarios.

∑ ∑ 𝛼𝛼ip×Ajlp
dem,rec,dis

i ∈ Ij ∈ J ≥ ∑ Dlk
dem,rec,dis

k ∈ K

∀l ∈ L, p ∈ P, dem ∈ DEM, rec ∈ REC, dis ∈ DIS (9)

Constraint (9) ensures that the converted defective product 

(cullet) does not exceed the amount transported to each 

recycling center under different scenarios.

∑ ∑ αip×Ajlp
dem,rec,dis

i ∈ Ij ∈ J ≤δl×O
l

∀l ∈ L, p ∈ P, dem ∈ DEM, rec ∈ REC, dis ∈ DIS (10)

Constraint (10) guarantees that the amount of cullet is at most 

the available capacity at each recycling center.

∑ Fik
dem,rec,dis

i ∈ I + ∑ ∑ αip×G
ikp

dem,rec,dis
p ∈ Pi ∈ I

+ ∑ Dlk
dem,rec,dis

l ∈ L ≤πk×U
k

∀k ∈ K, p ∈ P, dem ∈ DEM, rec ∈ REC, dis ∈ DIS (11)

Constraint (11) provides that the total volume of cullet sent to 

batch house k does not exceed its processing capacity when it 

is operational.

∑ Erbk
dem,rec,dis

b ∈ B + ∑ Ernk
',dem,rec,dis

n ∈ N ≤πr×U
k

∀k ∈ K, r ∈ R, dem ∈ DEM, rec ∈ REC, dis ∈ DIS (12)

Constraint (12) ensures that the total amount of each raw 

material r processed in the batch house k does not exceed its 

capacity under all scenarios.

∑ γ
i
×F

ik

dem,rec,dis
i ∈ I + ∑ ∑ ψ

i
×G

ikp

dem,rec,dis
p ∈ Pi ∈ I +

∑ ∑ ϕ
i
×X

ijp

dem,rec,dis
p ∈ Pi ∈ I ≤ωi×Yi

i ∈ I, dem ∈ DEM, rec ∈ REC, dis ∈ DIS (13)

Constraint (13) ensures that the total molten glass produced in 

furnace i does not exceed its capacity under each disruption, 

demand, and recycling scenario.

∑ ∑ Erbk
dem,rec,dis

r ∈ Rk ∈ K ≤μ
b
×Vb×(1-devb

''
)

b ∈ B, dem ∈ DEM, rec ∈ REC, dis ∈ DIS (14)

∑ ∑ Ernk
',dem,rec,dis

r ∈ Rk ∈ K ≤μ
n
×∆b

dis

n ∈ N, dem ∈ DEM, rec ∈ REC, dis ∈ DIS (15)
Constraint (14-15) ensures that the total supply from each 

batch supplier (b) does not exceed its capacity, accounting for 

potential disruptions in each scenario.

∑ Erbk
dem,rec,dis

b ∈ B + ∑ Ernk
',dem,rec,dis

n ∈ N ≥ ∑ Q
rki

dem,rec,dis
i ∈ I

∀k ∈ K, r ∈ R, dem ∈ DEM, rec ∈ REC, dis ∈ DIS (16)
Constraint (16) ensures a balanced flow, where the total input 

of each raw material (r) into batch facility (k), from primary 

and backup suppliers, matches the output required to meet 

furnace i demands in each scenario.

∑ ∑ prob
b

dis
×dis ∈ DIS ∆b

dis
b ∈ B ≤ (1-ρ) (17)

Constraint (17) enforces the ρ-robustness condition. When 

Constraint (14) cannot supply raw material (r) to batch house 

(k), ∆b
dis becomes active, adjusting the model's confidence and 

reliability by ensuring that Constraint (17) secures the supply 

of raw material (r) to batch house (k) from a backup supplier 

(n).

minri≤ ∑ Q
rki

dem,rec,dis
k ∈ K ≤maxri

∀i ∈ I, r ∈ R, dem ∈ DEM, rec ∈ REC, dis ∈ DIS (18)
Constraint (18) confirms that the supply of raw material (r) to 

furnace (i) remains within the specified minimum and 

maximum limits across all scenarios. It maintains operational 

feasibility and avoids over- or under-supply.

mini≤ ∑ Fik
dem,rec,dis

k ∈ K + ∑ ∑ αip×G
ikp

dem,rec,dis
p ∈ Pk ∈ K

+ ∑ ∑ Dlk
dem,rec,dis

≤maxik ∈ Kl ∈ L

∀i ∈ I, dem ∈ DEM, rec ∈ REC, dis ∈ DIS (19)

Constraint (19) assures that the total cullet supplied to furnace 

(i) remains within specified minimum and maximum limits 

across all scenarios. It provides a balanced and feasible cullet 

supply.

4. SOLUTION METHODOLOGY

The methodology, outlined in Figure 2, begins with 

developing the mathematical formulation. Scenarios for 

demand, recycling rates, and disruptions are then generated 

using deviation factors to model supply chain uncertainty.

Secondly, a two-stage scenario-based stochastic programming 

approach is adopted to address uncertainties in demand and 

recycling rates (Li et al., 2022). It links strategic decisions such 

as network configuration with operational decisions like batch 

allocation. Resilience is enhanced using a ρ-robust technique, 

which incorporates backup sourcing to mitigate suppliers’

disruptions (Khaligh et al., 2023). Thirdly, the LP-metric 

method transforms the three objectives into a single composite 

objective function (20). By assigning weights (w1 + w2 + w3 = 

1 and 1≥w1, w2, w3≥ 0) to the normalized deviations from 

optimal solutions (Z1
*, Z2

* , Z3
*), the model balances economic, 

environmental, and energy goals (Branke, 2008).

Min (ZLP)= (w1× (Z1-Z1
*

Z1
* )) + (w2× (Z2-Z2

*

Z2
* ))

+ (w3× (Z3-Z3
*

Z3
* )) (20)

Fourthly, the model is optimized using the Gurobi solver. 

Finally, the solutions are reported.
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Figure 2. Solution methodology overview.

5.  COMPUTATIONAL STUDY

5.1 Case study description

A fiberglass facility adopts a resilient CLSC to enhance 

sustainability by integrating GH into oxy-fuel furnaces. Figure 

3 illustrates forward and reverse material flows in the CLSC

network, considering 5 customer zones, 3 batch suppliers, 3 

backup batch suppliers, and 3 recycling centers.

Figure 3. Glass CLSC network design framework.

The network combines forward logistics (raw material

procurement, production) with reverse logistics (cullet

recycling), leveraging the cullet’s lower melting point to cut 

energy use and emissions. 

5.2 Data and experiment design

The study uses confidential data and evaluates three scenarios 

for demand: optimistic (+30%), neutral, and pessimistic (-

30%). Recycling rate scenarios include pessimistic (60%), 

neutral (100%), and optimistic (80%). Disruption scenarios 

cover partial (50%), neutral (no change), and complete (100%) 

disruption. GH is produced via hydropower-based electrolysis.

5.3 Computational results

Figure 4 illustrates the trade-offs among objectives. The Pareto 

frontier reveals optimal trade-offs: higher emission weights 

initially lower scores, while energy weights show steady gains. 

Cost weights dominate at higher indices, indicating a shift 

toward cost efficiency. The stepped frontier reflects discrete 

shifts, which highlight non-linear trade-offs. Balanced energy 

weighting yields optimal solutions, while extreme cost or 

emission focus leads to suboptimal outcomes.

Figure 4. Trade-off analysis (462 combinations of weights)

K-means clustering segmented solutions into three clusters

(Aristidis Likas, 2003). Cluster 1 (center: 134.91) focuses on 

optimizing energy and emissions with high objective values. 

Cluster 2 (center: 71.89) offers balanced trade-offs among 

cost, energy, and emissions. Cluster 3 (center: 15.08) 

prioritizes cost optimization, compromising energy and 

emission efficiency. Figure 5 depicts Cluster 1, emphasizing 

energy and emission optimization through stepped trade-offs. 

Figure 5. Pareto frontier solutions distribution for Cluster 1.

Figure 6 illustrates Cluster 2, balancing cost efficiency with 

moderate energy and emission trade-offs, with stepped shifts 

reflecting discrete optimizations. 

Figure 6. Pareto frontier solutions distribution for Cluster 2.

Figure 7 highlights Cluster 3's emission dominance, showing sharp

shifts in Pareto optimality due to extreme emission prioritization 

over cost and energy goals.
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Figure 7. Pareto frontier solutions distribution for Cluster 3.

6. CONCLUSIONS

This study develops a multi-objective MILP model to optimize 

batch composition and enhance resilience in glass 

manufacturing. It balances cost, emissions, and energy goals

by integrating GH and cullet into the CLSC. Using LP-metric 

optimization, the Pareto frontier guides trade-offs, while 

stochastic and robust programming manages uncertainties in 

demand, recycling rates, and supply disruptions. Limitations

(i.e., future directions) include ignoring GH price variability, 

reliance solely on hydropower-based GH production, and 

excluding H2 storage infrastructure and its risks (e.g., leakage). 
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