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Abstract: This study presents a multi-objective MILP model to design a resilient closed-loop supply chain
(CLSC) for glass production, integrating green hydrogen (GH) and natural gas (NG) as fuels for furnaces.
The model optimizes batch compositions, leveraging recycled glass (cullet) to minimize costs, energy use,
and CO,/NOy emissions. A Pareto frontier reveals trade-offs between objectives using an LP-metric
optimization framework. A scenario-based stochastic technique manages uncertainties in demand and
recycling rates, while a stochastic p-robust approach enhances supply chain resilience (SCR) by mitigating
batch supplier disruptions. Results identify three solution clusters: energy- and emission-focused, cost-

dominant, and balanced trade-offs.
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1. INTRODUCTION

As global industries shift towards sustainable practices, the
glass manufacturing sector faces unique challenges and
opportunities to reduce its environmental footprint while
meeting regulatory demands. Glass production, such as
fiberglass, is a high-energy, emission-intensive process that
requires substantial inputs of raw materials and fuel (Lima et
al., 2024). This process emits substantial quantities of CO; for
each unit of glass melted, along with NOy and other pollutants,
which contribute to air pollution and pose health risks (Hubert,
2021).

Traditionally, supply chain design in the glass industry has
been driven by economic and environmental priorities,
focusing on minimizing costs and CO, emissions to improve
operational efficiency (Pourjavad and Mayorga, 2018).
However, rising pressures from regulatory bodies, alongside
growing environmental concerns, e.g., resource depletion,
have expanded the need for a broader approach that includes
managing other sources of emissions (e.g., NOy) and
addressing high energy demands (Hartwell et al., 2022). For
hard-to-abate sectors like glass manufacturing, these
challenges call for practical strategies that incorporate cleaner
energy sources, e.g., GH, while optimizing the supply chain to
balance environmental and economic objectives.

This study advances sustainable supply chain (SSC) practices
by developing a CLSC model tailored to the glass industry,
addressing economic, environmental, and energy objectives. It
builds on prior work that integrates sustainability into supply
chain design and highlights the benefits of managing forward
and reverse flows under uncertainty to improve efficiency and
environmental outcomes (Borumand et al., 2024; Sadjady
Naeeni and Sabbaghi, 2022).

CLSC networks offer a promising strategy for enhancing
sustainability in glass production by collecting and
reprocessing post-consumer and industrial glass waste, thus

reducing reliance on raw materials and conserving energy
(Lozano-Oviedo et al., 2024). Efficient sorting and processing
in these systems help preserve high-quality glass fibers, which
are essential for fiberglass production. For example,
companies like Owens Corning recycle glass fibers into new
products, demonstrating the practical impact of CLSC
networks in minimizing waste and supporting environmentally
responsible  production (Corning, 2022). Moreover,
incorporating recycled glass, or cullet, into batch compositions
can significantly reduce energy consumption, as the cullet
melts at lower temperatures than raw materials. For example,
100% cullet can reduce energy needs by approximately 29%,
from 2.671 GJ per tonne to 1.886 GJ per tonne. Additionally,
every 10% increase in cullet usage decreases energy
consumption by 2-3% and CO; emissions by around 5%.
These benefits highlight the potential of the cullet to lower
emissions and reduce reliance on non-renewable resources in
glass production (M Kovacec, 2011).

Our model adopts a hybrid fuel approach, balancing the cost-
effectiveness of NG with the lower emissions profile of GH.
By using GH, which has the most significant environmental
impact, the model can present emission reductions while
keeping overall costs lower. This combined approach can
enable glass manufacturers to align emissions reduction
targets with economic feasibility, supporting a more
sustainable yet practical pathway toward decarbonization in
the glass industry (Everling, 2022).

Building on these sustainability strategies, addressing
uncertainties in demand and recycling rates (i.e., rate of return)
is essential to maintaining CLSC operations in glass
manufacturing. Demand fluctuations can affect cullet
requirements, while variations in recycling rates can impact its
availability, which influences batch composition and
potentially increases reliance on raw materials (Peng et al.,
2020). To further strengthen the supply chain, the model
considers backup batch suppliers to safeguard against potential
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disruptions (Ziari and Sajadieh, 2022). This proactive
approach is particularly relevant given the impact of recent
disruptions on global supply chains, as seen in industries like
Italian ceramics, where nearshoring and reshoring of suppliers
were employed to address shortages and mitigate geopolitical
risks (Fernandez-Miguel et al., 2022). The model bolsters
network resilience by incorporating adaptive sourcing
strategies like backup strategies, guaranteeing consistent
access to raw materials and flexible batch compositions-
critical for sustainable glass manufacturing in an
interconnected world. However, existing studies mainly focus
on cost and CO: emissions, often overlooking NOy, energy
diversification, and supply chain disruptions in glass
manufacturing. This study addresses these gaps by answering:
(1) How can a CLSC model optimize cost, energy, and
emissions trade-offs? (2) What is the role of cullet and hybrid
fuels in balancing sustainability and feasibility? (3) How can
supply chain resilience be enhanced under demand and
recycling uncertainties?

To achieve a balanced and sustainable CLSC design in glass
manufacturing, this study applies a multi-objective MILP
model that integrates economic, environmental, and energy
objectives. Using an LP-metric optimization framework, the
model constructs a Pareto frontier, which gives decision-
makers a view of trade-offs across cost, energy use, and
emissions. This method enables flexibility in prioritizing
objectives to support an optimal balance. Additionally,
demand and recycling rate uncertainties are addressed through
a two-stage stochastic model, which enhances robustness by
planning for variations and how strategic decisions inform
operational decisions (John R. Birge 2011). Disruptions
among batch suppliers are managed with a stochastic p-robust
technique, which secures network resilience and feasibility
even under diverse scenarios (Mazidi et al., 2019). These
approaches not only can provide a perspective on SSC design
but also can guarantee adaptability and reliability in the face
of real-world complexities.

2. PROBLEM DESCRIPTION

Figure 1 depicts a multi-product CLSC network for glass
manufacturing. The supply chain starts with batch suppliers (b)
delivering raw materials to batch facilities (k), with backup
suppliers (n) ensuring supply during disruptions. Batch
facilities blend raw materials with cullet from defective glass
(scrap/ production waste) from recycling centers (/) to create
compositions for glass furnaces (i), which produce glass
products for customer zones (j). The network incorporates
external cullet from recycling centers and internal cullet from
production waste. The CLSC includes a reverse flow of cullet
from customer zones to recycling centers (/), where it is
processed and sent to batch facilities. The model optimizes
forward flows (raw materials to batch houses, furnaces, and
customers) and reverse flows (cullet from customers to
recycling centers and batch houses). It addresses demand and
recycling uncertainties while enhancing resilience through
alternative sourcing for batch suppliers during disruptions.
Glass furnaces (i) in the CLSC use GH and NG for melting,
combining energy efficiency with reduced greenhouse gas
emissions, as GH serves as a low-emission alternative to NG.
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Figure 1. A conceptual framework for the CLSC network.

3. MATHEMATICAL FORMULATION

This section outlines the notations and multi-objective MILP
model within a two-stage stochastic framework to design a
resilient, sustainable CLSC for glass production. The model
optimizes costs, emissions, and energy consumption while
improving resilience to demand fluctuations, recycling
variability, and supplier disruptions.

3.1 Notations

Sets

1 Set of furnaces, i € 1

K Set of batch houses, k£ € K

B Set of batch suppliers, b € B

N Set of backup batch suppliers, n € N

L Set of recycling centers, [ € L

J Set of customer zones, j € J

P Set of product types, p € P

C Set of energy sources, ¢ € C

R Set of raw materials, » € R

DEM Set of demand scenarios, dem € DEM

REC Set of recycling scenarios, rec € REC

DIS Set of disruption scenarios, dis € DIS

Parameters

Cis Ci> Ch» C» C] Fixed cost of operating facilities i, k, b,
n, [ (€)

tc;, tcy, tey, tep, Unit transportation cost from i, j, /, b,

tc,, tcy n, k (€)

P, pep, pe,, pe,,  Processing cost per unit in facilities 7, /,

pe, b, n,c, K (€)

diy;, diy, diy, Distance between two different

dipy, diy, diy;, facilities (km)

dij

en, Energy cost per kWh for ¢ (€)

¢ Energy consumption for melting cullet
using ¢ (kWh/kg)

9, Energy consumption for melting »
using ¢ (kWh/kg)

n CO: emissions per kg of cullet (kg)

S, CO: emissions per kg of r (kg)

cem, CO: emissions per kWh for
combustion of ¢ (kg)

nem, NOx emissions per kWh for
combustion of ¢ (kg)

d;, Annual demand for p inj (kg)

,[)’jp Recycling rate for p inj

dev;, Deviation rates for recycling for p inj
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Deviation rates for demand for p inj
Deviation rates for disruption in b
Recycling probabilities for rec in j for

4
Demand probabilities for dem inj for p

Disruption probabilities for dis in b

Conversion factor for defective glass to
cullet for p in i (kg)

Conversion factor for cullet to molten
glass in i

Conversion factor for defective glass to
molten glass in i

Conversion factor for finished product
to molten glass in i

Conversion factor for raw material to
molten glass in i

Capacity for batch house k& (kg)
Capacity for r in k (kg)

Capacity for b (kg)

Capacity for n (kg)

Capacity for / (kg)

Minimum and maximum annual
consumption for r per i (kg)

Molten glass production capacity per i
(kg)

Minimum and maximum annual usage
of cullet per i (kg)

Confidence level

Flow of p from i to j under scenario
dem, rec, and dis (kg)

Flow of defective glass fromj to /
under scenario dem, rec, and dis (kg)
Flow of cullet from / to k£ under
scenario dem, rec, and dis (kg)

Flow of  from b to &k under scenario
dem, rec, and dis (kg)

Flow of r from n to £ under scenario
dem, rec, and dis (kg)

Flow of cullet from i to k£ under
scenario dem, rec, and dis (kg)

Flow of defective glass p from i to k
under scenario dem, rec, and dis (kg)
Flow of r from £ to i under scenario
dem, rec, and dis (kg)

Flow of cullet from £ to 7 under
scenario dem, rec, and dis (kg)

Total cost under scenario dem, rec, and
dis (€)

Total energy under scenario dem, rec,
and dis (kWh)

Total emission under scenario dem,
rec, and dis (kg)

Total cost (€)

Total energy (kWh)

Total emission (kg)

1 if a potential furnace i operates; 0,
otherwise.

Uy 1 if a potential batch house k operates;
0, otherwise.

v 1 if a potential batch supplier b
operates; 0, otherwise.

0, 1 if a potential recycling center /
operates; 0, otherwise.

v, 1 if a potential backup batch supplier /
operates; 0, otherwise.

A 1 if a disruption (dis) happens in b; 0,
otherwise.

3.2. Mathematical optimization model

The two-stage p-robust stochastic optimization model with a
multi-objective approach is defined as follows:

3.2.1 Objective functions

Min (Zl) =

di d
Yres Zj eJlpe P Didis € DIS 2udem € DEM Direc € REC (P”Obbﬂx P’”Obj;m x
pro bjr;c x Cdem,rec,dix) ( 1 )
Tcdem,rec,dis:

2ier(cXY)+ ek (XU +Xpep(c,XVp)+ X e (¢ X0+
/ : rec.di

Ynen(© V)t XieXjesXpeptexdiytpe)x XZ;m ety

. dem,rec.di
YesZier Xpepltey<dig)x A" Als+
Yier ke (tepxdigtpe) XD

. rec,di

Yieidke K(tcixdlik+pck)xF?]Lenl reeds 4

. dem,rec,di
YierXkek Lpeptexdigtpe)*a,x G P+

. rec.di
Yrer2be B2k ek (tepXdiytpe,)x Ef];km ety
. ' dem,rec.dis

Zr ER Zn € NZk € K(tcnxdlnk+pck)>< E,«,,]fm rec 13+

. dem,rec,di
YrerZke k Bie 1 (tepxdigtpe)x OO0+

. rec.di
ke k Die(texdigtpe,) XM ¢
em,re ’d'- rec, i
Yeecliertke sz eplicl (encxéc)X(Fﬁfm e m"'aszGgH’)ec 4 4
dem.rec.di om rec.dis

leé’m,’é’c IS)+ Zc € CZi € IZk € KZr ER (encx‘grc)>< Qf/;'m’nc’dm
Vdem € DEM, rec € REC, dis € DIS 2)
The first objective function (1) minimizes the total cost of the

CLSC network, considering the present value of costs across

demand, recycling, and disruption scenarios, each weighted by
its probability of occurrence. The term TC¥™"ecdis ip
Constraint (2) provides a breakdown of total costs for each
scenario combination, which the objective function then seeks

to minimize.

Min(Z,)=
di d
Db e B €.J 2up € P Dadis € DIS adem € DEM Darec € REC (PO > prob”fm x
rec
P mbjp x i
TENdem,rec, lS) (3)
TEMdem,rec,dis —
‘ wrecdi dem,rec.dis

YeecTierThexTperLier EXF™ ”+a,-pXGﬂ;’” recdis 4

e recd rec,di
D”fm rec. IY)JF Zc c CZi c IZk c KZ;- €R 19rc>< r/f[m rec,dis
Vdem € DEM, rec € REC, dis € DIS 4)

The second objective function (3) minimizes the total energy
consumption across furnaces (i), accounting for demand,
recycling, and disruption scenarios, each weighted by its
probability.  Constraint (4) calculates total energy
consumption, including the energy used to melt raw materials
(r) and cullet. The term TEN“""°¢s provides the total energy
for each scenario.
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Min(Z3)=

di d
YbenjesLpepldise DIs Ldem € DEM Srec € REC (Proby”x probi ™' x
pro bjipecx TE. em,rec,diS) (5)
TE, lem, rec,dis —

rec.dis dem,recdis
YeecXierXiek XpepdicL (fcx(cemﬁ”ema))x(l‘—:-j/fm e ”*alpri,;m S
dem,rec,dis em,rec,dis
D" Yt Tee e Tie 1 Tee k Tre r (X (cem Fnem )yx QO+
lem,rec,dis dem,rec,dis dem,rec,dis
YeecXierkek2re R (Fi +0(,»p><Gikp +Dy, )+

YrerZrek Die X Qe

Vdem € DEM, rec € REC, dis € DIS (6)
The third objective function minimizes total emissions across
furnaces (i), accounting for demand, recycling, and disruption
scenarios weighted by their probabilities. Constraint (6)
computes emissions from raw materials and cullet (process
emissions) and energy use (consumption emissions). The
term TEM@™"*¢9 in Constraint (6) represents scenario-
specific total emissions targeted for minimization.

3.2.2 Constraints

Zi EIXZ;m,rec,dis Edevjpxaljp
Vj€J,p€P,dem € DEM, rec € REC, dis € DIS @)
Constraint (7) ensures that product supply meets demand

across scenarios.

Srer A" = devi,<d;, B, dev,,
Vj€J,p€P,dem € DEM, rec € REC, dis € DIS ®)
Constraint (8) ensures that defective products are sent to
recycling centers based on specific recycling rates under

various scenarios.

Zj . JZ;‘ . aip XAz;m,rec,dis > Zk . KDZ(em,rec,dis
VI€L,p € P,dem € DEM, rec € REC, dis € DIS O]
Constraint (9) ensures that the converted defective product
(cullet) does not exceed the amount transported to each

recycling center under different scenarios.

dem,rec.dis
YjesZierap*dy, " <6%0,
Vi€ L,p € P,dem € DEM, rec € REC, dis € DIS (10)
Constraint (10) guarantees that the amount of cullet is at most

the available capacity at each recycling center.
rec,di dem,rec,di
ZIEI ikemrec IS+ZiEIZp€PaipXGik€p’MI€C Ay
+ Z[ . Dldkem,rec,dls Sﬂ'kx Uk
Vk € K, p € P, dem € DEM, rec € REC, dis € DIS an
Constraint (11) provides that the total volume of cullet sent to

batch house k does not exceed its processing capacity when it
is operational.

Zb s r;z’t,rec,dis + Zn . NE":’Llllim,rec,dis S?Trx Uk

Vk €K, r €ER, dem € DEM, rec € REC, dis € DIS
Constraint (12) ensures that the total amount of each raw
material » processed in the batch house & does not exceed its

capacity under all scenarios.
lem,rec,dis dem,rec,dis
Zie[)’,—xﬁ +Zie[2peP‘//,-XG. +
ik ikp
em,rec,dis
ZielzpeP¢iXXZp <wxY;

i €1, dem € DEM, rec € REC, dis € DIS (13)
Constraint (13) ensures that the total molten glass produced in
furnace i does not exceed its capacity under each disruption,

demand, and recycling scenario.
em,rec,dis "
YkekXrerEn <, *Vp*(1-devy)

b € B, dem € DEM, rec € REC, dis € DIS
YiexDrer " <, xAG®

(12)

(14)

n € N, dem € DEM, rec € REC, dis € DIS (15)
Constraint (14-15) ensures that the total supply from each
batch supplier (b) does not exceed its capacity, accounting for
potential disruptions in each scenario.

Zb s r;[r{n,rec,dls + Zn c NE;jzm,rec,dts > Zi o/ Qiile{z;n,rec,dls

Vk €K, r € R, dem € DEM, rec € REC, dis € DIS (16)
Constraint (16) ensures a balanced flow, where the total input
of each raw material (r) into batch facility (k), from primary
and backup suppliers, matches the output required to meet
furnace i demands in each scenario.

b e s Lt e pisprobly A5 < (1) (17
Constraint (17) enforces the p-robustness condition. When
Constraint (14) cannot supply raw material () to batch house
k), AZ“ becomes active, adjusting the model's confidence and
reliability by ensuring that Constraint (17) secures the supply
of raw material (7) to batch house (k) from a backup supplier
(n). |

min, <Yy ek ij;f,m oI <max,;

Vi€ l,r € R,dem € DEM, rec € REC, dis € DIS (18)
Constraint (18) confirms that the supply of raw material (7) to
furnace (i) remains within the specified minimum and
maximum limits across all scenarios. It maintains operational
feasibility and avoids over- or under-supply.

. em,rec,dis
min<Ye g Fy + ke k 2pepGipX

+%re s Siex DM <ma,

Vi € I, dem € DEM, rec € REC, dis € DIS (19)
Constraint (19) assures that the total cullet supplied to furnace
(f) remains within specified minimum and maximum limits
across all scenarios. It provides a balanced and feasible cullet

supply.

GcAiem,rec,dis
ikp

4. SOLUTION METHODOLOGY

The methodology, outlined in Figure 2, begins with
developing the mathematical formulation. Scenarios for
demand, recycling rates, and disruptions are then generated
using deviation factors to model supply chain uncertainty.
Secondly, a two-stage scenario-based stochastic programming
approach is adopted to address uncertainties in demand and
recycling rates (Li et al., 2022). It links strategic decisions such
as network configuration with operational decisions like batch
allocation. Resilience is enhanced using a p-robust technique,
which incorporates backup sourcing to mitigate suppliers’
disruptions (Khaligh et al., 2023). Thirdly, the LP-metric
method transforms the three objectives into a single composite
objective function (20). By assigning weights (w; + w, + w; =
1 and 1>w;, w,, w3>0) to the normalized deviations from
optimal solutions (Z}, Z; , Z3), the model balances economic,
environmental, and energy goals (Branke, 2008).

vin - (s (48 )« (v (57))
(e (28))

Fourthly, the model is optimized using the Gurobi solver.
Finally, the solutions are reported.

(20)
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Figure 2. Solution methodology overview.

5. COMPUTATIONAL STUDY
5.1 Case study description

A fiberglass facility adopts a resilient CLSC to enhance
sustainability by integrating GH into oxy-fuel furnaces. Figure
3 illustrates forward and reverse material flows in the CLSC
network, considering 5 customer zones, 3 batch suppliers, 3
backup batch suppliers, and 3 recycling centers.
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Figure 3. Glass CLSC network design framework.

The network combines forward logistics (raw material
procurement, production) with reverse logistics (cullet
recycling), leveraging the cullet’s lower melting point to cut
energy use and emissions.

5.2 Data and experiment design

The study uses confidential data and evaluates three scenarios
for demand: optimistic (+30%), neutral, and pessimistic (-
30%). Recycling rate scenarios include pessimistic (60%),
neutral (100%), and optimistic (80%). Disruption scenarios
cover partial (50%), neutral (no change), and complete (100%)
disruption. GH is produced via hydropower-based electrolysis.

5.3 Computational results

Figure 4 illustrates the trade-offs among objectives. The Pareto
frontier reveals optimal trade-offs: higher emission weights

initially lower scores, while energy weights show steady gains.
Cost weights dominate at higher indices, indicating a shift
toward cost efficiency. The stepped frontier reflects discrete
shifts, which highlight non-linear trade-offs. Balanced energy
weighting yields optimal solutions, while extreme cost or
emission focus leads to suboptimal outcomes.
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Pareto I'rontier Selution Index

Figure 4. Trade-off analysis (462 combinations of weights)

K-means clustering segmented solutions into three clusters
(Aristidis Likas, 2003). Cluster 1 (center: 134.91) focuses on
optimizing energy and emissions with high objective values.
Cluster 2 (center: 71.89) offers balanced trade-offs among
cost, energy, and emissions. Cluster 3 (center: 15.08)
prioritizes cost optimization, compromising energy and
emission efficiency. Figure 5 depicts Cluster 1, emphasizing
energy and emission optimization through stepped trade-offs.
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Figure 5. Pareto frontier solutions distribution for Cluster 1.

Figure 6 illustrates Cluster 2, balancing cost efficiency with
moderate energy and emission trade-offs, with stepped shifts
reflecting discrete optimizations.
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Figure 6. Pareto frontier solutions distribution for Cluster 2.

Figure 7 highlights Cluster 3's emission dominance, showing sharp
shifts in Pareto optimality due to extreme emission prioritization
over cost and energy goals.
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Figure 7. Pareto frontier solutions distribution for Cluster 3.

6. CONCLUSIONS

This study develops a multi-objective MILP model to optimize
batch composition and enhance resilience in glass
manufacturing. It balances cost, emissions, and energy goals
by integrating GH and cullet into the CLSC. Using LP-metric
optimization, the Pareto frontier guides trade-offs, while
stochastic and robust programming manages uncertainties in
demand, recycling rates, and supply disruptions. Limitations
(i.e., future directions) include ignoring GH price variability,
reliance solely on hydropower-based GH production, and
excluding H; storage infrastructure and its risks (e.g., leakage).
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